77 research outputs found
Sélection et contrôle de modes de déplacement pour un robot mobile autonome en environnements naturels
Le déplacement entièrement autonome d'un robot mobile en environnements naturels est un problème encore loin d'être résolu. Il nécessite la mise en oeuvre de fonctionnalités permettant de réaliser le cycle perception/décision/action, que nous distinguons en deux catégories : navigation (perception et décision sur le mouvement à réaliser) et locomotion (réalisation du mouvement). Pour pouvoir faire face à la grande diversité de situations que le robot peut rencontrer en environnement naturel, il peut être primordial de disposer de plusieurs types de fonctionnalités complémentaires, constituant autant de modes de déplacement possibles. En effet, de nombreuses réalisations de ces derniers ont été proposées dans la littérature ces dernières années mais aucun ne peut prétendre permettre d'exécuter un déplacement autonome en toute situation. Par conséquent, il semble judicieux de doter un robot mobile d'extérieur de plusieurs modes de déplacement complémentaires. Dès lors, ce dernier doit également disposer de moyens de choisir en ligne le mode le plus approprié. Dans ce cadre, cette thèse propose une mise en oeuvre d'un tel système de sélection de mode de déplacement, réalisée à partir de deux types de données : une observation du contexte pour déterminer dans quel type de situation le robot doit réaliser son déplacement et une surveillance du comportement du mode courant, effectuée par des moniteurs, et qui influence les transitions vers d'autres modes lorsque le comportement du mode actuel est jugé non satisfaisant. Ce manuscrit présente donc : un formalisme probabiliste d'estimation du mode à appliquer, des modes de navigation et de locomotion exploités pour réaliser le déplacement autonome, une méthode de représentation qualitative du terrain (reposant sur l'évaluation d'une difficulté calculée après placement de la structure du robot sur un modèle numérique de terrain), et des moniteurs surveillant le comportement des modes de déplacement utilisés (évaluation de l'efficacité de la locomotion par roulement, surveillance de l'attitude et de la conguration du robot...). Quelques résultats expérimentaux de ces éléments intégrés à bord de deux robots d'extérieur différents sont enfin présentés et discutés. ABSTRACT : Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementaryfunctionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the litterature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data : an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which inuence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a diculty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and conguration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed
LookUP: Vision-Only Real-Time Precise Underground Localisation for Autonomous Mining Vehicles
A key capability for autonomous underground mining vehicles is real-time
accurate localisation. While significant progress has been made, currently
deployed systems have several limitations ranging from dependence on costly
additional infrastructure to failure of both visual and range sensor-based
techniques in highly aliased or visually challenging environments. In our
previous work, we presented a lightweight coarse vision-based localisation
system that could map and then localise to within a few metres in an
underground mining environment. However, this level of precision is
insufficient for providing a cheaper, more reliable vision-based automation
alternative to current range sensor-based systems. Here we present a new
precision localisation system dubbed "LookUP", which learns a
neural-network-based pixel sampling strategy for estimating homographies based
on ceiling-facing cameras without requiring any manual labelling. This new
system runs in real time on limited computation resource and is demonstrated on
two different underground mine sites, achieving real time performance at ~5
frames per second and a much improved average localisation error of ~1.2 metre.Comment: 7 pages, 7 figures, accepted for IEEE ICRA 201
The Proteomics of N-terminal Methionine Cleavage
Methionine aminopeptidase (MAP) is a ubiquitous, essential enzyme involved in protein N-terminal methionine excision. According to the generally accepted cleavage rules for MAP, this enzyme cleaves all proteins with small side chains on the residue in the second position (P1′), but many exceptions are known. The substrate specificity of Escherichia coli MAP1 was studied in vitro with a large (\u3e120) coherent array of peptides mimicking the natural substrates and kinetically analyzed in detail. Peptides with Val or Thr at P1′ were much less efficiently cleaved than those with Ala, Cys, Gly, Pro, or Ser in this position. Certain residues at P2′, P3′, and P4′ strongly slowed the reaction, and some proteins with Val and Thr at P1′ could not undergo Met cleavage. These in vitro data were fully consistent with data for 862 E. coli proteins with known N-terminal sequences in vivo. The specificity sites were found to be identical to those for the other type of MAPs, MAP2s, and a dedicated prediction tool for Met cleavage is now available. Taking into account the rules of MAP cleavage and leader peptide removal, the N termini of all proteins were predicted from the annotated genome and compared with data obtained in vivo. This analysis showed that proteins displaying N-Met cleavage are overrepresented in vivo. We conclude that protein secretion involving leader peptide cleavage is more frequent than generally thought
Laser-camera data discrepancies and reliable perception in outdoor robotics
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust
A probabilistic framework to monitor a multi-mode outdoor robot
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presente
Characterisation of the Delphi Electronically Scanning Radar for robotics applications
Mm-wave radars have an important role to play in field robotics for applications that require reliable perception in challenging environmental conditions. This paper presents an experimental characterisation of the Delphi Electronically Scanning Radar (ESR) for mobile robotics applications. The performance of the sensor is evaluated in terms of detection ability and accuracy, for varying factors including: sensor temperature, time, target’s position, speed, shape and material. We also evaluate the sensor’s target separability performance
- …