2,550 research outputs found

    Optical Coherence Tomography Angiography (OCTA) in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder

    Get PDF
    Vascular changes are increasingly recognized as important factors in the pathophysiology of neuroinflammatory disease, especially in multiple sclerosis (MS). The relatively novel technology of optical coherence tomography angiography (OCTA) images the retinal and choroidal vasculature non-invasively and in a depth-resolved manner. OCTA provides an alternative quantitative measure of retinal damage, by measuring vascular density instead of structural atrophy. Preliminary results suggest OCTA is sensitive to retinal damage in early disease stages, while also having less of a "floor-effect" compared with commonly used OCT metrics, meaning it can pick up further damage in a severely atrophied retina in later stages of disease. Furthermore, it may serve as a surrogate marker for vascular pathology in the central nervous system. Data to date consistently reveal lower densities of the retinal microvasculature in both MS and neuromyelitis optica spectrum disorder (NMOSD) compared with healthy controls, even in the absence of prior optic neuritis. Exploring the timing of vascular changes relative to structural atrophy may help answer important questions about the role of hypoperfusion in the pathophysiology of neuroinflammatory disease. Finally, qualitative characteristics of retinal microvasculature may help discriminate between different neuroinflammatory disorders. There are however still issues regarding image quality and development of standardized analysis methods before OCTA can be fully incorporated into clinical practice

    PHP22 EFFECTS OF DECENTRALIZED RESPONSIBILITY FOR COSTS OF OUTPATIENT PRESCRIPTION DRUGS ON THE PHARMACEUTICAL COST DEVELOPMENT IN SWEDEN

    Get PDF

    The aerosol-climate model ECHAM5-HAM

    Get PDF
    The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced

    Between tinkering and transformation: A contemporary appraisal of climate change adaptation research on the world's islands

    Get PDF
    Islands are at the center of discourses on climate change. Yet despite extensive work on diverse island systems in a changing climate, we still lack an understanding of climate change-related responses amongst islands and what shifting from what might be called “tinkering” (perhaps heat warnings) to “transformational” adaptation (perhaps relocation) means for these vastly different landmasses which are often grouped together by default. Through a systematic review of the climate change adaptation scientific literature, this paper critically reflects on how considering islands as a homogenous ensemble and the use of buzzwords such as “transformational adaptation” may be problematic for diverse island realities under climate change. Our findings show that the adaptation evidence base actually provides literature on contrasting island types and cultural and political contexts, including Small Island Developing States as well as other island territories. This study finds research gaps with respect to regions (e.g., South America, Africa, and Mediterranean) and that there is overall both little evidence of and a lack of context-specific definitions of transformational adaptation in island contexts. The adaptation literature does not yet fully reflect the experiences or needs of islands regarding transitions and transformations throughout history
    corecore