20 research outputs found

    Enhanced Eddy Activity in the Beaufort Gyre in Response to Sea Ice Loss

    Get PDF
    The Beaufort Gyre freshwater content has increased since the 1990s, potentially stabilizing in recent years. The mechanisms proposed to explain the stabilization involve either mesoscale eddy activity that opposes Ekman pumping or the reduction of Ekman pumping due to reduced sea ice?ocean surface stress. However, the relative importance of these mechanisms is unclear. Here, we present observational estimates of the Beaufort Gyre mechanical energy budget and show that energy dissipation and freshwater content stabilization by eddies increased in the late-2000s. The loss of sea ice and acceleration of ocean currents after 2007 resulted in enhanced mechanical energy input but without corresponding increases in potential energy storage. To balance the energy surplus, eddy dissipation and its role in gyre stabilization must have increased after 2007. Our results imply that declining Arctic sea ice will lead to an increasingly energetic Beaufort Gyre with eddies playing a greater role in its stabilization

    Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss

    Get PDF
    The Beaufort Gyre freshwater content has increased since the 1990s, potentially stabilizing in recent years. The mechanisms proposed to explain the stabilization involve either mesoscale eddy activity that opposes Ekman pumping or the reduction of Ekman pumping due to reduced sea ice–ocean surface stress. However, the relative importance of these mechanisms is unclear. Here, we present observational estimates of the Beaufort Gyre mechanical energy budget and show that energy dissipation and freshwater content stabilization by eddies increased in the late-2000s. The loss of sea ice and acceleration of ocean currents after 2007 resulted in enhanced mechanical energy input but without corresponding increases in potential energy storage. To balance the energy surplus, eddy dissipation and its role in gyre stabilization must have increased after 2007. Our results imply that declining Arctic sea ice will lead to an increasingly energetic Beaufort Gyre with eddies playing a greater role in its stabilization

    Arctic Ocean surface geostrophic circulation 2003-2014

    Get PDF
    Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE) congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully attribute causality to these increases

    Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Get PDF
    The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations of momentum transfer, and imply that the future Arctic system could become increasingly seasonal

    Increasing frequency and duration of Arctic winter warming events

    Get PDF
    Near-surface air temperatures close to 0°C were observed in situ over sea ice in the central Arctic during the last three winter seasons. Here we use in situ winter (December–March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. Observations of winter warming events exist over most of the Arctic Basin. Temperatures exceeding -5°C were observed during >30% of winters from 1954 to 2010 by North Pole drifting stations or ocean buoys. Using the ERA-Interim record (1979–2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > 10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). There is a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration

    The Arctic

    Full text link
    peer reviewe

    Automated Calibration of a Snow‐On‐Sea‐Ice Model

    No full text
    Abstract Snow on Arctic sea ice has many, contrasting effects on ice thickness and extent. Furthermore, estimates of snow depth on Arctic sea ice are a key input for ice thickness estimates from satellite altimeters such as ICESat‐2. Models such as the NASA Eulerian Snow on Sea Ice Model (NESOSIM) have been recently utilized by the sea ice community to provide time‐varying basin‐wide estimates of snow depth and density on Arctic sea ice. NESOSIM is a two‐snow‐layer model with simple representations of snow accumulation, wind packing, loss due to blowing snow, and redistribution due to sea ice motion. Two free parameters in NESOSIM, which dictate the bulk effect of wind packing (densification) and blowing snow processes, lack direct observational constraints. We present an indirect calibration of these parameters using a Markov Chain Monte Carlo (MCMC) approach. NESOSIM output is calibrated to observations of snow depth from Operation IceBridge and CRREL‐Dartmouth buoys, and density from historical drifting stations. OIB measurements alone are found to more strictly constrain the blowing snow parameter, and including additional observations yields more physically reasonable density estimates. The MCMC‐calibrated model output is further used to estimate sea ice thickness and uncertainty from model parameter uncertainty using ICESat‐2 freeboard measurements. Despite visible differences in density, the change in ice thickness is minimal. We also find that the model is relatively insensitive to parameter variations, and hence, the snow model uncertainty contribution to ice thickness is small compared to the systematic uncertainty from snow in the current ICESat‐2 thickness product

    Atmospheric Form Drag Coefficients Over Arctic Sea Ice Using Remotely Sensed Ice Topography Data, Spring 2009-2015

    Get PDF
    Sea ice topography significantly impacts turbulent energy/momentum exchange, e.g., atmospheric (wind) drag, over Arctic sea ice. Unfortunately, observational estimates of this contribution to atmospheric drag variability are spatially and temporally limited. Here we present new estimates of the neutral atmospheric form drag coefficient over Arctic sea ice in early spring, using high-resolution Airborne Topographic Mapper elevation data from NASA's Operation IceBridge mission. We utilize a new three-dimensional ice topography data set and combine this with an existing parameterization scheme linking surface feature height and spacing to form drag. To be consistent with previous studies investigating form drag, we compare these results with those produced using a new linear profiling topography data set. The form drag coefficient from surface feature variability shows lower values [less than 0.5-1 10(exp. 3)] in the Beaufort/Chukchi Seas, compared with higher values [greater than 0.5-1 10(exp. 3)] in the more deformed ice regimes of the Central Arctic (north of Greenland and the Canadian Archipelago), which increase with coastline proximity. The results show moderate interannual variability, including a strong increase in the form drag coefficient from 2013 to 2014/2015 north of the Canadian Archipelago. The form drag coefficient estimates are extrapolated across the Arctic with Advanced Scatterometer satellite radar backscatter data, further highlighting the regional/interannual drag coefficient variability. Finally, we combine the results with existing parameterizations of form drag from floe edges (a function of ice concentration) and skin drag to produce, to our knowledge, the first pan-Arctic estimates of the total neutral atmospheric drag coefficient (in early spring) from 2009 to 2015

    The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis

    No full text
    The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a new, open-source snow budget model that is currentlyconfigured to produce daily estimates of the depth and density of snow on sea ice across the Arctic Ocean throughthe accumulation season. NESOSIM has been developed in a three-dimensional Eulerian framework and includes two(vertical) snow layers and several simple parameterizations (accumulation, wind packing, advection_divergence, blowingsnow lost to leads) to represent key sources and sinks of snow on sea ice. The model is forced with daily inputs of snowfall and near-surface winds (from reanalyses), sea ice concentration (from satellite passive microwave data) and sea ice drift (from satellite feature tracking) during the accumulation season (August through April). In this study, we present the NESOSIM formulation, calibration efforts, sensitivity studies and validation efforts across an Arctic Ocean domain (100 km horizontal resolution). The simulated snow depth and density are calibrated with in situ data collected on drifting ice stations during the 1980s. NESOSIM shows strong agreement with the in situ seasonal cycles of snow depth and density, and shows good (moderate) agreement with the regional snow depth (density) distributions. NESOSIM is run for a contemporary period (2000 to 2015), with the results showing strong sensitivity to the reanalysis derived snowfall forcing data, with the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the Japanese Meteorological Agency 55-year reanalysis (JRA-55) forced snow depths generally higher than ERA-Interim,and the Arctic System Reanalysis (ASR) generally lower. We also generate and force NESOSIM with a consensus "median" daily snowfall dataset from these reanalyses.The results are compared against snow depth estimates derived from NASA's Operation IceBridge (OIB) snow radar data from 2009 to 2015, showing moderate_strong correlations and root mean squared errors of 10 cm depending on the OIB snow depth product analyzed, similar to the comparisons between OIB snow depths and the commonly used modified Warren snow depth climatology. Potential improvements to this initial NESOSIM formulation are discussed in the hopes of improving the accuracy and reliability of these simulated snow depths and densities

    Intercomparison of Precipitation Estimates over the Arctic Ocean and Its Peripheral Seas from Reanalyses

    No full text
    Precipitation over the Arctic Ocean has a significant impact on the basin-scale freshwater and energy budgets but is one of the most poorly constrained variables in atmospheric reanalyses. Precipitation controls the snow cover on sea ice, which impedes the exchange of energy between the ocean and atmosphere, inhibiting sea ice growth. Thus, accurate precipitation amounts are needed to inform sea ice modeling, especially for the production of thickness estimates from satellite altimetry freeboard data. However, obtaining a quantitative estimate of the precipitation distribution in the Arctic is notoriously difficult because of a number of factors, including a lack of reliable, long-term in situ observations; difficulties in remote sensing over sea ice; and model biases in temperature and moisture fields and associated uncertainty of modeled cloud microphysical processes in the polar regions. Here, we compare precipitation estimates over the Arctic Ocean from eight widely used atmospheric reanalyses over the period 200016 (nominally the new Arctic). We find that the magnitude, frequency, and phase of precipitation vary drastically, although interannual variability is similar. Reanalysis-derived precipitation does not increase with time as expected; however, an increasing trend of higher fractions of liquid precipitation (rainfall) is found. When compared with drifting ice mass balance buoys, three reanalyses (ERA-Interim, MERRA, and NCEP R2) produce realistic magnitudes and temporal agreement with observed precipitation events, while two products [MERRA, version 2 (MERRA-2), and CFSR] show large, implausible magnitudes in precipitation events. All the reanalyses tend to produce overly frequent Arctic precipitation. Future work needs to be undertaken to determine the specific factors in reanalyses that contribute to these discrepancies in the new Arctic
    corecore