139 research outputs found

    The influence of the biological pump on ocean chemistry:Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems

    Get PDF
    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this ‘biological pump’ have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long‐term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3‐dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom‐water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower‐than‐modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom‐water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has exerted a first‐order control on Earth system evolution across Phanerozoic time

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Lower Miocene Stratigraphy along the Panama Canal and Its Bearing on the Central American Peninsula

    Get PDF
    Before the formation of the Central American Isthmus, there was a Central American Peninsula. Here we show that southern Central America existed as a peninsula as early as 19 Ma, based on new lithostratigraphic, biostratigraphic and strontium chemostratigraphic analyses of the formations exposed along the Gaillard Cut of the Panama Canal. Land mammals found in the Miocene Cucaracha Formation have similar body sizes to conspecific taxa in North America, indicating that there existed a terrestrial connection with North America that allowed gene flow between populations during this time. How long did this peninsula last? The answer hinges on the outcome of a stratigraphic dispute: To wit, is the terrestrial Cucaracha Formation older or younger than the marine La Boca Formation? Previous stratigraphic studies of the Panama Canal Basin have suggested that the Cucaracha Formation lies stratigraphically between the shallow-marine Culebra Formation and the shallow-to-upper-bathyal La Boca Formation, the latter containing the Emperador Limestone. If the La Boca Formation is younger than the Cucaracha Formation, as many think, then the peninsula was short-lived (1–2 m.y.), having been submerged in part by the transgression represented by the overlying La Boca Formation. On the other hand, our data support the view that the La Boca Formation is older than the Cucaracha Formation. Strontium dating shows that the La Boca Formation is older (23.07 to 20.62 Ma) than both the Culebra (19.83–19.12 Ma) and Cucaracha (Hemingfordian to Barstovian North American Land Mammal Ages; 19–14 Ma) formations. The Emperador Limestone is also older (21.24–20.99 Ma) than the Culebra and Cucaracha formations. What has been called the “La Boca Formation” (with the Emperador Limestone), is re-interpreted here as being the lower part of the Culebra Formation. Our new data sets demonstrate that the main axis of the volcanic arc in southern Central America more than likely existed as a peninsula connected to northern Central America and North America for much of the Miocene, which has profound implications for our understanding of the tectonic, climatic, oceanographic and biogeographic history related to the formation of the Isthmus of Panama

    Introduction

    No full text
    corecore