37 research outputs found

    Increased Prevalence of Albuminuria in HIV-Infected Adults with Diabetes

    Get PDF
    HIV and type 2 diabetes are known risk factors for albuminuria, but no previous reports have characterized albuminuria in HIV-infected patients with diabetes.We performed a cross-sectional study including 73 HIV-infected adults with type 2 diabetes, 82 HIV-infected non-diabetics, and 61 diabetic control subjects without HIV. Serum creatinine >1.5 mg/dL was exclusionary. Albuminuria was defined as urinary albumin/creatinine ratio >30 mg/g.The prevalence of albuminuria was significantly increased among HIV-infected diabetics (34% vs. 13% of HIV non-diabetic vs. 16% diabetic control, p = 0.005). HIV status and diabetes remained significant predictors of albuminuria after adjusting for age, race, BMI, and blood pressure. Albumin/creatinine ratio correlated significantly with HIV viral load (r = 0.28, p = 0.0005) and HIV-infected subjects with albuminuria had significantly greater cumulative exposure to abacavir (p = 0.01). In an adjusted multivariate regression analysis of HIV-infected subjects, the diagnosis of diabetes (p = 0.003), higher HIV viral load (p = 0.03) and cumulative exposure to abacavir (p = 0.0009) were significant independent predictors of albuminuria.HIV and diabetes appear to have additive effects on albuminuria which is also independently associated with increased exposure to abacavir and HIV viral load. Future research on the persistence, progression and management of albuminuria in this unique at-risk population is needed

    Monoclonal Anti-AMP Antibodies Are Sensitive and Valuable Tools for Detecting Patterns of AMPylation

    No full text
    AMPylation is a post-translational modification that modifies amino acid side chains with adenosine monophosphate (AMP). Recently, a role of AMPylation as a universal regulatory mechanism in infection and cellular homeostasis has emerged, driving the demand for universal tools to study this modification. Here, we describe three monoclonal anti-AMP antibodies (mAbs) from mouse that are capable of protein backbone-independent recognition of AMPylation, in denatured (western blot) as well as native (ELISA, IP) applications, thereby outperforming previously reported tools. These antibodies are highly sensitive and specific for AMP modifications, highlighting their potential as tools for new target identification, as well as for validation of known targets. Interestingly, applying the anti-AMP mAbs to various cancer cell lines reveals a previously undescribed broad and diverse AMPylation pattern. In conclusion, these anti-AMP mABs will further advance the current understanding of AMPylation and the spectrum of modified targets

    Dephosphocholination by Legionella effector Lem3 functions through remodelling of the switch II region of Rab1b

    No full text
    Bacterial pathogens often make use of post-translational modifications to manipulate host cells. Legionella pneumophila, the causative agent of Legionnaires disease, secretes the enzyme AnkX that uses cytidine diphosphate-choline to post-translationally modify the human small G-Protein Rab1 with a phosphocholine moiety at Ser76. Later in the infection, the Legionella enzyme Lem3 acts as a dephosphocholinase, hydrolytically removing the phosphocholine. While the molecular mechanism for Rab1 phosphocholination by AnkX has recently been resolved, structural insights into the activity of Lem3 remained elusive. Here, we stabilise the transient Lem3:Rab1b complex by substrate mediated covalent capture. Through crystal structures of Lem3 in the apo form and in complex with Rab1b, we reveal Lem3's catalytic mechanism, showing that it acts on Rab1 by locally unfolding it. Since Lem3 shares high structural similarity with metal-dependent protein phosphatases, our Lem3:Rab1b complex structure also sheds light on how these phosphatases recognise protein substrates

    Rab1-AMPylation by Legionella DrrA is allosterically activated by Rab1

    No full text
    Legionella pneumophila infects eukaryotic cells by forming a replicative organelle – the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella

    Fucose binding motifs on mucin core glycopeptides impact bacterial lectin recognition

    No full text
    Mucin glycoproteins are essential components of the mucosal barrier, which protects the host from pathogens. Throughout evolution, bacteria have developed strategies to modulate and penetrate this barrier, and cause virulence by interacting with mucin O-glycans at the epithelial cell-surface. O-fucosylated glycan epitopes on mucins are key ligands of many bacterial lectins. Here, a chemoenzymatic synthesis strategy is described to prepare a library of fucosylated mucin core glycopeptides to enable studies of mucin-interacting and fucose-binding bacterial lectins. Glycan cores with biologically important Lewis and H-antigens were prepared decorating the peptide backbone at different sites and densities. The fucosylated mucin glycopeptides were applied in microarray binding studies to explore the importance of glycan core and peptide backbone presentation of these antigens in binding interactions with the P. aeruginosa lectin LecB and the C. difficile toxin A

    Identification of targets of AMPylating Fic enzymes by co-substrate-mediated covalent capture

    No full text
    Various pathogenic bacteria use post-translational modifications to manipulate the central components of host cell functions. Many of the enzymes released by these bacteria belong to the large Fic family, which modify targets with nucleotide monophosphates. The lack of a generic method for identifying the cellular targets of Fic family enzymes hinders investigation of their role and the effect of the post-translational modification. Here, we establish an approach that uses reactive co-substrate-linked enzymes for proteome profiling. We combine synthetic thiol-reactive nucleotide derivatives with recombinantly produced Fic enzymes containing strategically placed cysteines in their active sites to yield reactive binary probes for covalent substrate capture. The binary complexes capture their targets from cell lysates and permit subsequent identification. Furthermore, we determined the structures of low-affinity ternary enzyme–nucleotide–substrate complexes by applying a covalent-linking strategy. This approach thus allows target identification of the Fic enzymes from both bacteria and eukarya

    Bacteria Lectin Recognition Towards Fucose Binding Motifs Highlights the Impact of Presenting Mucin Core Glycopeptides

    No full text
    Mucin glycoproteins are essential components of the mucosal protective barrier, which constantly senses and clears the host from pathogens. Throughout evolution, bacteria and virus have developed strategies to modulate and penetrate the mucosal barrier and cause virulence by interacting with the glycans of membrane-bound mucins at the epithelial cell-surface. These interactions may promote bacteria cell-adhesion, biofilm formation, protein toxin delivery, or cause an inflammatory environment. O-fucosylated glycan epitopes are commonly found on mucin glycoproteins, and are key ligands of many bacterial and viral lectins (glycan binding proteins). Herein we describe a chemoenzymatic synthesis strategy to efficiently prepare an extensive library of fucosylated mucin core tandem repeats glycopeptides to elucidate the fine fucose-binding specificities of the Pseudomonas aeruginosa lectin LecB and the Clostridium difficile toxin A. Therefore, glycan core structures were decorated with terminal Lewis and H-antigens, which play critical roles in infection biology. The fucosylated mucin glycopeptides were applied in microarray binding studies to explore the importance of the glycan and peptide backbone presentation of these terminal antigens in binding interactions with the two bacterial lectins

    Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands

    No full text
    Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m2 field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions

    Tax planning, corporate governance and firm value

    No full text
    Tax planning by firms is a highly significant activity. After audit fees, tax related services are the largest source of fee income for UK accounting firms. When viewed in terms of its impact, tax planning is the major source of the corporation tax gap amongst large firms (HMRC, 2010).Although traditionally tax planning has been viewed as benefiting shareholders via increased after tax earnings, more recently the underlying motivation has been questioned. Desai and Dharmapala (2006) argue that when an information asymmetry exists between managers and shareholders with respect to tax planning, it can facilitate managers acting in their own interests resulting in a negative association between tax planning and firm value.Using a sample of UK quoted firms from 2005-2007 and data drawn from International Accounting Standard 12 Income Taxes (IASB, 2010) Effective Tax Rate (ETR) reconciliations, this paper reports such a negative relationship. Further, the relationship is robust to the inclusion of corporate governance measures which could be expected to moderate the potential implications of a tax related shareholder-manager information asymmetry. An innovation of this paper is in using the ETR reconciliations to examine sub-categories of tax planning activities.The paper contributes to the debate of who determines, and benefits from tax planning conducted by firms. Its findings have direct policy relevance for shareholders and tax administrations in monitoring and controlling firms’ tax planning activities
    corecore