297 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation explores the design and use of an electromagnetic manipulation system that has been optimized for the dipole-eld model. This system can be used for noncontact manipulation of adjacent magnetic tools and combines the eld strength control of current electromagnetic systems with the analytical modeling of permanent-magnet systems. To design such a system, it is rst necessary to characterize how the shape of the eld source aects the shape of the magnetic eld. The magnetic eld generated by permanent magnets and electromagnets can be modeled, far from the source, using a multipole expansion. The error associated with the multipole expansion is quantied, and it is shown that, as long as the point of interest is 1.5 radii of the smallest sphere that can fully contain the magnetic source, the full expansion will have less than 1% error. If only the dipole term, the rst term in the expansion, is used, then the error is minimized for cylindrical shapes with a diameter-to-length ratio of 4=3 and for rectangular-bars with a cube. Applying the multipole expansion to electromagnets, an omnidirectional electromagnet, comprising three orthogonal solenoids and a spherical core, is designed that has minimal dipole-eld error and equal strength in all directions. Although this magnet can be constructed with any size core, the optimal design contains a spherical core with a diameter that is 60% of the outer dimension of the magnet. The resulting magnet's ability to dextrously control the eld at a point is demonstrated by rotating an endoscopic-pill mockup to drive it though a lumen and roll a permanent-magnet ball though several trajectories. Dipole elds also apply forces on adjacent magnetized objects. The ability to control these forces is demonstrated by performing position control on an orientation-constrained magnetic oat and nally by steering a permanent magnet, which is aligned with the applied dipole eld, around a rose curve

    categoryCompare, an analytical tool based on feature annotations

    Get PDF
    Assessment of high-throughputā€”omics data initially focuses on relative or raw levels of a particular feature, such as an expression value for a transcript, protein, or metabolite. At a second level, analyses of annotations including known or predicted functions and associations of each individual feature, attempt to distill biological context. Most currently available comparative- and meta-analyses methods are dependent on the availability of identical features across data sets, and concentrate on determining features that are differentially expressed across experiments, some of which may be considered ā€œbiomarkers.ā€ The heterogeneity of measurement platforms and inherent variability of biological systems confounds the search for robust biomarkers indicative of a particular condition. In many instances, however, multiple data sets show involvement of common biological processes or signaling pathways, even though individual features are not commonly measured or differentially expressed between them. We developed a methodology, categoryCompare, for cross-platform and cross-sample comparison of high-throughput data at the annotation level. We assessed the utility of the approach using hypothetical data, as well as determining similarities and differences in the set of processes in two instances: (1) denervated skin vs. denervated muscle, and (2) colon from Crohn's disease vs. colon from ulcerative colitis (UC). The hypothetical data showed that in many cases comparing annotations gave superior results to comparing only at the gene level. Improved analytical results depended as well on the number of genes included in the annotation term, the amount of noise in relation to the number of genes expressing in unenriched annotation categories, and the specific method in which samples are combined. In the skin vs. muscle denervation comparison, the tissues demonstrated markedly different responses. The Crohn's vs. UC comparison showed gross similarities in inflammatory response in the two diseases, with particular processes specific to each disease

    Soft micromachines with programmable motility and morphology

    Get PDF
    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers

    A Model for the Evolution of Nucleotide Polymerase Directionality

    Get PDF
    Background: In all known living organisms, every enzyme that synthesizes nucleic acid polymers does so by adding nucleotide 59-triphosphates to the 39-hydroxyl group of the growing chain. This results in the well known 5ā€™?3ā€™ directionality of all DNA and RNA Polymerases. The lack of any alternative mechanism, e.g. addition in a 3ā€™?5 ā€™ direction, may indicate a very early founder effect in the evolution of life, or it may be the result of a selective pressure against such an alternative. Methodology/Principal Findings: In an attempt to determine whether the lack of an alternative polymerase directionality is the result of a founder effect or evolutionary selection, we have constructed a basic model of early polymerase evolution. This model is informed by the essential chemical properties of the nucleotide polymerization reaction. With this model, we are able to simulate the growth of organisms with polymerases that synthesize either 5ā€™?3 ā€™ or 3ā€™?5 ā€™ in isolation or in competition with each other. Conclusions/Significance: We have found that a competition between organisms with 5ā€™?3 ā€™ polymerases and 3ā€™?5ā€™ polymerases only results in a evolutionarily stable strategy under certain conditions. Furthermore, we have found that mutations lead to a much clearer delineation between conditions that lead to a stable coexistence of these populations and conditions which ultimately lead to success for the 5ā€™?3 ā€™ form. In addition to presenting a plausible explanation for th

    Free energy estimation of short DNA duplex hybridizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one.</p> <p>Results</p> <p>We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-standard experimental conditions.</p> <p>Conclusions</p> <p>Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is capable of performing accurate estimations of free energies for perfect match duplexes under both standard and non-standard experimental conditions and may serve as a baseline for further developments in this area of research.</p

    Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Get PDF
    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.Massachusetts Institute of Technology. Faculty Discretionary Research FundNational Institutes of Health (U.S.) (Award UL1 RR 025758)Harvard Catalyst (Grant

    P2X receptor-mediated purinergic sensory pathways to the spinal cord dorsal horn

    Get PDF
    P2X receptors are expressed on different functional groups of primary afferent fibers. P2X receptor-mediated sensory inputs can be either innocuous or nociceptive, depending on which dorsal horn regions receive these inputs. We provide a brief review of P2X receptor-mediated purinergic sensory pathways to different regions in the dorsal horn. These P2X purinergic pathways are identified in normal animals, which provides insights into their physiological functions. Future studies on P2X purinergic pathways in animal models of pathological conditions may provide insights on how P2X receptors play a role in pathological pain states

    Thermodynamic contributions of single internal rAĀ·dA, rCĀ·dC, rGĀ·dG and rUĀ·dT mismatches in RNA/DNA duplexes

    Get PDF
    The thermodynamic contributions of rAĀ·dA, rCĀ·dC, rGĀ·dG and rUĀ·dT single internal mismatches were measured for 54 RNA/DNA duplexes in a 1ā€‰M NaCl buffer using UV absorbance thermal denaturation. Thermodynamic parameters were obtained by fitting absorbance versus temperature profiles using the curve-fitting program Meltwin. The weighted average thermodynamic data were fit using singular value decomposition to determine the eight non-unique nearest-neighbor parameters for each internal mismatch. The new parameters predict the Ī”GĀ°37, Ī”HĀ° and melting temperature (Tm) of duplexes containing these single mismatches within an average of 0.33ā€‰kcal/mol, 4.5ā€‰kcal/mol and 1.4Ā°C, respectively. The general trend in decreasing stability for the single internal mismatches is rGĀ·dGā€‰>ā€‰rUĀ·dTā€‰>ā€‰rAĀ·dAā€‰>ā€‰rCĀ·dC. The stability trend for the base pairs 5ā€² of the single internal mismatch is rGĀ·dCā€‰>ā€‰rCĀ·dGā€‰>ā€‰rAĀ·dTā€‰>ā€‰rUĀ·dA. The stability trend for the base pairs 3ā€² of the single internal mismatch is rCĀ·dGā€‰>ā€‰rGĀ·dC >> rAĀ·dTā€‰>ā€‰rUĀ·dA. These nearest-neighbor values are now a part of a complete set of single internal mismatch thermodynamic parameters for RNA/DNA duplexes that are incorporated into the nucleic acid assay development software programs Visual oligonucleotide modeling platform (OMP) and ThermoBLAST
    • ā€¦
    corecore