46 research outputs found

    Validation of a small-size pooling approach targeting hospital surveillance of SARS-CoV-2 infection

    Get PDF
    Recent studies describing the detection of SARS-CoV-2 RNA in pools of 5 to 32 samples reported false negative rates up to 10% for large groups, suggesting that smaller sample pools are a good compromise to increase sample processing capacity while maintaining test reliability. Since 5-sample pools were shown to efficiently detect SARS-CoV-2 RNA in RT-PCR assays, we chose to test and validate this approach using a highthroughput RNA extraction and amplification platform

    Burkholderia cenocepacia Vaginal Infection in Patient with Smoldering Myeloma and Chronic Hepatitis C

    Get PDF
    We report a case of a vaginal infection caused by a strain of Burkholderia cenocepacia. The strain was isolated from vaginal swab specimens from a 68-year-old woman with smoldering myeloma and chronic hepatitis C virus infection who was hospitalized for abdominal abscess. Treatment with piperacillin/tazobactam eliminated B. cenocepacia infection and vaginal symptoms

    a metaproteomic pipeline to identify newborn mouse gut phylotypes

    Get PDF
    Abstract In order to characterize newborn mouse gut microbiota phylotypes in very early-life stages, an original metaproteomic pipeline, based on LC–MS 2 -spectra and Mascot driven NCBI non-redundant repository database interrogation was developed. An original computational analysis assisted in the generation of a taxonomic gut architecture from protein hits to operational taxonomic units (OTUs) and related functional categories. Regardless of the mouse's genetic background, a prevalence of Firmicutes (Lactobacillaceae) and Proteobacteria (Enterobacteriaceae) was observed among the entire Eubacteria taxonomic node. However, a higher abundance of Firmicutes was retrieved for Balb/c gut microbiota compared to Rag2 ko mice, the latter was mainly characterized by a Proteobacteria enriched microbiota. The metaproteomic-obtained OTUs were supported, for the identification (ID) of the cultivable bacteria fraction, corroborated by axenic culture-based MALDI-TOF MS IDs. Particularly, functional analysis of Rag2 ko mice gut microbiota proteins revealed the presence of abundant glutathione, riboflavin metabolism and pentose phosphate pathway components, possibly related to genetic background. The metaproteomic pipeline herein presented may represent a useful tool to investigate the highly debated onset of the human gut microbiota in the first days of life, when the bacterial composition, despite its very low diversity (complexity), is still very far from an exhaustive description and other complex microbial consortia. Biological significance The manuscript deals with a "frontier" topic regarding the study of the gut microbiota and the application of a metaproteomic pipeline to unveil the complexity of this fascinating ecosystem at the very early stages of life. Indeed during these phases, its diversity is very low but the bacterial content is highly "instable", and the relative balance between mucosal and fecal bacteria starts its dynamics of "fight" to get homeostasis. However, in the neonatal period, especially immediately after birth, a comprehensive description of this microbial eco-organ is still lacking, while it should be mandatory to highlight its first mechanisms of homeostasis and perturbation, while it co-develops with and within the host species. In order to unravel its low but almost unknown microbial community multiplicity, the newborn mouse gut, characterized by a "very" low complexity, was herein selected as model to design a LC–MS 2 -based shotgun metaproteomic approach, potentially suitable to study onset and shaping in human newborns. A microbiological semi-automatic computational analysis was performed to infer gut phylotypes; such as proof of evidence, related OTUs were compared to axenic-culture-based MALDI-TOF MS IDs showing consistency at family and phyla levels for the bacterial cultivable fraction. This article is part of a Special Issue entitled: Trends in Microbial Proteomics

    Recurrence of measles in central Italy: the experience of a hospital in Rome

    Get PDF
    Measles continue to be a major public health issue worldwide with high morbidity and mortality rates. The disease is still endemic in Europe and during 2017 a vast outbreak was described in Italy, Romania and Hungary, which led to thousands of new cases and several deaths. In Italy, 3931 confirmed cases of measles were reported to the Italian national surveillance system from many Italian administrative regions; Lazio, in central Italy, exhibited the highest number of infected patients 1322 (33.63%) and as well as the highest incidence. In this study, we describe the results of a retrospective analysis, carried out during 2016 and 2017, concerning the measles antibody prevalence in patients and healthcare workers attending the Sant’Andrea Hospital of Rome (Lazio). A total of 94 patients (median 30 years of age) were screened in 2016, and 316 (median 40 years of age) during 2017, with an increase of 236% compared to previous year. During 2017, 41 confirmed cases of measles were reported while none in 2016 (P47 years of age) and only one confirmed measles infection was recorded in 2017. These results suggest that there is still an unvaccinated portion of the adult population, who sustain the endemic circulation of measles in Italy. In addition to reach herd immunization on children of 2 years old, catch-up vaccination campaign targeting adult population in Italy and other European countries needs to be implemented to prevent future measles outbreak

    Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Stenotrophomonas maltophilia </it>has recently gained considerable attention as an important emerging pathogen in cystic fibrosis (CF) patients. However, the role of this microorganism in the pathophysiology of CF lung disease remains largely unexplored. In the present study for the first time we assessed the ability of <it>S. maltophilia </it>CF isolates to adhere to and form biofilm in experimental infection experiments using the CF-derived bronchial epithelial IB3-1cell line. The role of flagella on the adhesiveness of <it>S. maltophilia </it>to IB3-1 cell monolayers was also assessed by using <it>fliI </it>mutant derivative strains.</p> <p>Results</p> <p>All <it>S. maltophilia </it>CF isolates tested in the present study were able, although at different levels, to adhere to and form biofilm on IB3-1 cell monolayers. Scanning electron and confocal microscopy revealed <it>S. maltophilia </it>structures typical of biofilm formation on bronchial IB3-1 cells. The loss of flagella significantly (P < 0.001) decreased bacterial adhesiveness, if compared to that of their parental flagellated strains. <it>S. maltophilia </it>CF isolates were also able to invade IB3-1 cells, albeit at a very low level (internalization rate ranged from 0.01 to 4.94%). Pre-exposure of IB3-1 cells to <it>P. aeruginosa </it>PAO1 significantly increased <it>S. maltophilia </it>adhesiveness. Further, the presence of <it>S. maltophilia </it>negatively influenced <it>P. aeruginosa </it>PAO1 adhesiveness.</p> <p>Conclusions</p> <p>The main contribution of the present study is the finding that <it>S. maltophilia </it>is able to form biofilm on and invade CF-derived IB3-1 bronchial epithelial cells, thus posing a rationale for the persistence and the systemic spread of this opportunistic pathogen in CF patients. Experiments using <it>in vivo </it>models which more closely mimic CF pulmonary tissues will certainly be needed to validate the relevance of our results.</p

    Monitoring COVID-19 transmission risks by quantitative real-time PCR tracing of droplets in hospital and living environments

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination occurs through droplets and biological fluids released in the surroundings from patients or asymptomatic carriers. Surfaces and objects contaminated by saliva or nose secretions represent a risk for indirect transmission of coronavirus disease 2019 (COVID-19). We assayed surfaces from hospital and living spaces to identify the presence of viral RNA and the spread of fomites in the environment. Anthropic contamination by droplets and biological fluids was monitored by detecting the microbiota signature using multiplex quantitative real-time PCR (qPCR) on selected species and massive sequencing on 16S amplicons. A total of 92 samples (flocked swabs) were collected from critical areas during the pandemic, including indoor (three hospitals and three public buildings) and outdoor surfaces exposed to anthropic contamination (handles and handrails, playgrounds). Traces of biological fluids were frequently detected in spaces open to the public and on objects that are touched with the hands (.80%). However, viral RNA was not detected in hospital wards or other indoor and outdoor surfaces either in the air system of a COVID hospital but only in the surroundings of an infected patient, in consistent association with droplet traces and fomites. Handled objects accumulated the highest level of multiple contaminations by saliva, nose secretions, and fecal traces, further supporting the priority role of handwashing in prevention. In conclusion, anthropic contamination by droplets and biological fluids is widespread in spaces open to the public and can be traced by qPCR. Monitoring fomites can support evaluation of indirect transmission risks for coronavirus or other flu-like viruses in the environment

    Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development

    Get PDF
    The colonization and development of gut microbiota immediately after birth is highly variable and depends on several factors, such as delivery mode and modality of feeding during the first months of life. A cohort of 31 mother and neonate pairs, including 25 at-term caesarean (CS) and 6 vaginally (V) delivered neonates (DNs), were included in this study and 121 meconium/faecal samples were collected at days 1 through 30 following birth. Operational taxonomic units (OTUs) were assessed in 69 stool samples by phylogenetic microarray HITChip and inter- and intra-individual distributions were established by inter-OTUs correlation matrices and OTUs co-occurrence or co-exclusion networks. H-1-NMR metabolites were determined in 70 stool samples, PCA analysis was performed on 55 CS DNs samples, and metabolome/OTUs co-correlations were assessed in 45 CS samples, providing an integrated map of the early microbiota OTUs-metabolome. A microbiota "core" of OTUs was identified that was independent of delivery mode and lactation stage, suggesting highly specialized communities that act as seminal colonizers of microbial networks. Correlations among OTUs, metabolites, and OTUs-metabolites revealed metabolic profiles associated with early microbial ecological dynamics, maturation of milk components, and host physiology.Peer reviewe

    Transcriptional regulation of pseudobactin synthesis in the plant growth-promoting Pseudomonas B10.

    No full text
    We have investigated the iron-dependent regulation of the psbA gene, encoding the enzyme L-ornithine N-5-oxygenase in the rhizobacterium Pseudomonas B10. We have cloned and characterized a Pseudomonas B10 gene, designated psbS, required for psbA expression. PsbS is endowed with structural and functional features of extracytoplasmatic function (ECF) sigma factors, and is closely related to the iron starvation sigmas PvdS, PbrA, and PfrI, which mediate the iron-repressible expression of pseudobactin biosynthesis genes in different Pseudomonas species. Expression of psbA was found to be indirectly controlled by Fur, which abrogates psbS transcription in the presence of sufficient iron

    Community-Acquired Acinetobacter radioresistens Bacteremia in an HIV-Positive Patient

    No full text
    We describe the first case of community-acquired bacteremia caused by Acinetobacter radioresistens; the patient was a 32-year-old HIV-positive neutropenic woman. Ambiguous Gram staining and poor biochemical reactivity of blood culture isolates misguided early diagnosis and therapy. Bacterial identification was based on 16S rDNA sequence analysis. A. radioresistens can be considered as a cause of opportunistic infection in immunodeficient patients

    Multiple-Antibiotic Resistance Mediated by Structurally Related IncL/M Plasmids Carrying an Extended-Spectrum β-Lactamase Gene and a Class 1 Integron

    No full text
    A conjugative IncL/M plasmid (pSEM) conferring resistance to gentamicin, amikacin, kanamycin, sulfonamides, and expanded-spectrum cephalosporins was found in pathogenic strains of Salmonella enterica serotype Typhimurium. Resistance to aminoglycosides was encoded by a sul1-type class 1 integron (In-t3). An extended-spectrum beta-lactamase gene, bla(SHV-5), was identified 3.5 kb downstream of the integrase (intI1) gene of In-t3. Nucleotide sequence analysis of the 5.3-kb bla(SHV-5)–In-t3 region of pSEM highlighted striking similarities with IncL/M plasmids isolated from nosocomial gram-negative pathogens, conferring resistance to expanded-spectrum cephalosporins and aminoglycosides
    corecore