1,479 research outputs found

    A Pulsational Model for the Orthogonal Polarization Modes in Radio Pulsars

    Get PDF
    In an earlier paper, we introduced a model for pulsars in which non-radial oscillations of high spherical degree (\el) aligned to the magnetic axis of a spinning neutron star were able to reproduce subpulses like those observed in single-pulse measurements of pulsar intensity. The model did not address polarization, which is an integral part of pulsar emission. Observations show that many pulsars emit radio waves that appear to be the superposition of two linearly polarized emission modes with orthogonal polarization angles. In this paper, we extend our model to incorporate linear polarization. As before, we propose that pulsational displacements of stellar material modulate the pulsar emission, but now we apply this modulation to a linearly-polarized mode of emission, as might be produced by curvature radiation. We further introduce a second polarization mode, orthogonal to the first, that is modulated by pulsational velocities. We combine these modes in superposition to model the observed Stokes parameters in radio pulsars.Comment: 19 pages, 4 figures accepted Ap

    Compositional stability of FePt nanoparticles on SiO2/Si during annealing

    Get PDF
    The loss of Fe due to oxidation or diffusion into the substrate can prevent the successful preparation of well-ordered, stoichiometric, FePt nanoparticles. In this work we report the composition changes during annealing observed for small ( \u3c 10 nm) FePt nanoparticles on thermally grown SiO2 layers on Si wafer substrates. Additionally, we describe the use of a controlled reducing gas mixture, Ar+H-2+H2O, to reduce the loss of Fe

    Shock-Wave Experiment with the Chelyabinsk LL5 Meteorite : Experimental Parameters and the Texture of the Shock-Affected Material

    Get PDF
    A spherical geometry shock experiment with the light-colored lithology material of the Chelyabinsk LL5 ordinary chondrite was carried out. The material was affected by shock and thermal metamorphism whose grade ranged from initial stage S3-4 to complete melting. The temperature and pressure were estimated at >2000 degrees C and >90 GPa. The textural shock effects were studied by optical and electron microscopy. A single experimental impact has produced the whole the range of shock pressures and temperatures and, correspondingly, four zones identified by petrographic analysis: (1) a melt zone, (2) a zone of melting silicates, (3) a black ring zone, and (4) a zone of weakly shocked initial material. The following textural features of the material were identified: displacement of the metal and troilite phases from the central melt zone; the development of a zone of mixed lithology (light-colored fragments in silicate melt); the origin of a dark-colored lithology ring; and the generation of radiating shock veinlets. The experimental sample shows four textural zones that correspond to the different lithology types of the Chelyabinsk LL5 meteorite found in fragments of the meteoritic shower in the collection at the Ural Federal University. Our results prove that shock wave loading experiment can be successfully applied in modeling of space shocks and can be used to experimentally model processes at the small bodies of the solar system.Peer reviewe

    Electrochemical characteristics, thermal and chemical compatibility in the La0.7Sr0.3CoO3 electrode-γ-BIFEVOX electrolyte system

    Full text link
    The electrochemical characteristics and compatibility of components of the electrode-electrolyte system, where the electrolyte is chosen to be γ-BIFEVOX compositions crystallizing in a stable tetragonal phase and the cathode material is chosen to be composite electrodes of composition La 0.7Sr0.3CoO3 + Bi4V 1.7Fe0.3O11-δ, were studied. © 2013 Pleiades Publishing, Ltd

    Probing the cytochrome c′ folding landscape

    Get PDF
    The folding kinetics of R. palustris cytochrome c′ (cyt c′) have been monitored by heme absorption and native Trp72 fluorescence at pH 5. The Trp72 fluorescence burst signal suggests early compaction of the polypeptide ensemble. Analysis of heme transient absorption spectra reveals deviations from two-state behavior, including a prominent slow phase that is accelerated by the prolyl isomerase cyclophilin. A nonnative proline configuration (Pro21) likely interferes with the formation of the helical bundle surrounding the heme

    Use of global ionospheric maps for HF Doppler measurements interpretation

    Get PDF
    © 2017. The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale

    Application of HF Doppler measurements for the investigation of internal atmospheric waves in the ionosphere

    Get PDF
    We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3-4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1-72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher. © 2009 COSPAR

    Use of global ionospheric maps for HF Doppler measurements interpretation

    Get PDF
    © 2017. The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale

    Use of global ionospheric maps for HF Doppler measurements interpretation

    Get PDF
    © 2017. The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale

    Angle variations distribution of SW signal

    Get PDF
    Angle variation distribution analysis was realized in this work. We use oblique ionospheric data from Doppler phase goniometric complex "Specrt" for analysis. Two windows spectral estimation method was used to get series of wave vector time derivatives
    corecore