433 research outputs found

    Volumes of polytopes in spaces of constant curvature

    Full text link
    We overview the volume calculations for polyhedra in Euclidean, spherical and hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary tetrahedron in H3H^3 and S3S^3. We also present some results, which provide a solution for Seidel problem on the volume of non-Euclidean tetrahedron. Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmagupta formula for the area of such quadrilateral. We also present a formula for the area of a hyperbolic trapezoid.Comment: 22 pages, 9 figures, 58 reference

    Model reference adaptive control of a nonsmooth dynamical system

    Get PDF
    In this paper a modified model reference adaptive control (MRAC) technique is presented which can be used to control systems with nonsmooth characteristics. Using unmodified MRAC on (noisy) nonsmooth systems leads to destabilization of the controller. A localized analysis is presented which shows that the mechanism behind this behavior is the presence of a time invariant zero eigenvalue in the system. The modified algorithm is designed to eliminate this zero eigenvalue, making all the system eigenvalues stable. Both the modified and unmodified strategies are applied to an experimental system with a nonsmooth deadzone characteristic. As expected the unmodified algorithm cannot control the system, whereas the modified algorithm gives stable robust control, which has significantly improved performance over linear fixed gain control

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies

    Full text link
    Resonance yields and spectra from elementary p+p and Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV from the STAR experiment at RHIC are presented and discussed in terms of chemical and thermal freeze-out conditions. Thermal models do not adequately describe the yields of the resonance production in central Au+Au collisions. The approach to include elastic hadronic interactions between chemical freeze-out and thermal freeze-out suggests a time of Δτ>\Delta \tau>5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland, California, to be published in Journal of Physics G: Nuclear and Particle Physic

    Identified particles at large transverse momenta in STAR in Au+Au collisions @ sqrt(s_NN) = 200 GeV

    Full text link
    We report measurements of the ratios of identified hadrons (pi,K,p,Lambda) in Au+Au collisions at sqrt(s_NN) = 200 GeV as a function of both collision centrality and transverse momentum (p_T). Ratios of anti-baryon to baryon yields are independent of p_T within 2<p_T <6 GeV/c indicating that, for such a range, our measurements are inconsistent with theoretical pQCD calculations predicting a decrease due to a stronger contribution from valence quark scattering. For both strange and non-strange species, a strong baryon enhancement relative to meson yields is observed as a function of collision centrality in this intermediate p_T region, leading to p/pi and Lambda/K ratios greater than unity. The nuclear modification factor, R_cp (central relative to peripheral collisions), is used to illustrate the interplay between jet quenching and hadron production. The physics implications of these measurements are discussed with reference to different theoretical models.Comment: 5 pages, 4 figures. Proceedings of Quark Matter 2004 Conference, Jan 2004, Oakland, USA. Submitted to Journal of Physics
    corecore