97 research outputs found

    Weight management, psychological distress and binge eating in obesity. A reappraisal of the problem

    Get PDF
    The psychological effects of dieting and weight loss have been an area of controversy in obesity. As part of a large multicenter study involving 1944 obese subjects seeking treatment at Italian medical centers, we investigated the effects of weight loss on psychological distress and binge eating in 500 subjects remaining in continuous treatment at different centers with slightly different strategies (78.8% females; age: M = 46.2 years, SD = 10.8; BMI: M = 37.3 kg/m2, SD = 5.6). At baseline and after 12 months all subjects were evaluated by the SymptomCheckList-90 Global Severity Index (SCL-GSI) and by the Binge Eating Scale (BES). In both males and females, weight loss was associated with improved psychometric testing. Changes in SCL-GSI were associated with changes in BMI (b = 0.13; t = 2.85; p < 0.005), after adjustment for age, gender, initial BMI and center variability. Similarly, BES changes were associated with BMI change (b = 0.15; t = 3.21; p < 0.001). We conclude that in subjects compliant to follow-up a successful management of obesity, not directly addressing psychological distress, is associated with a significant improvement of both psychological distress and binge eating, linearly related to the amount of weight loss, independently of treatment procedures

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different

    NUCLEAR FACTOR Y, subunit A (NF-YA) proteins positively regulate flowering and act through FLOWERING LOCUS T

    Get PDF
    Photoperiod dependent flowering is one of several mechanisms used by plants to initiate the developmental transition from vegetative growth to reproductive growth. The NUCLEAR FACTOR Y (NF-Y) transcription factors are heterotrimeric complexes composed of NF-YA and histone-fold domain (HFD) containing NF-YB/NF-YC, that initiate photoperiod-dependent flowering by cooperatively interacting with CONSTANS (CO) to drive the expression of FLOWERING LOCUS T (FT). This involves NF-Y and CO binding at distal CCAAT and proximal “CORE” elements, respectively, in the FT promoter. While this is well established for the HFD subunits, there remains some question over the potential role of NF-YA as either positive or negative regulators of this process. Here we provide strong support, in the form of genetic and biochemical analyses, that NF-YA, in complex with NF-YB/NF-YC proteins, can directly bind the distal CCAAT box in the FT promoter and are positive regulators of flowering in an FT-dependent manner.This work was funded by the National Science Foundation (US, http://www.nsf.gov/) award 1149822 to BFH. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Ye

    NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

    Get PDF
    We thank Dr. Ben Smith (University of Oklahoma) for assistance with FLIM-FRET measurements and Dr. Min Ni (University of Minnesota) for critical reading of the manuscript. The cop1-4 mutant allele and cop1-4 co-9 cross were kindly provided by George Coupland (Max Planck Institute).Author Summary Light perception is critically important for the fitness of plants in both natural and agricultural settings. Plants not only use light for photosynthesis, but also as a cue for proper development. As a seedling emerges from soil it must determine the light environment and adopt an appropriate growth habit. When blue and red wavelengths are the dominant sources of light, plants will undergo photomorphogenesis. Photomorphogenesis describes a number of developmental responses initiated by light in a seedling, and includes shortened stems and establishing the ability to photosynthesize. The genes regulating photomorphogenesis have been studied extensively, but a complete picture remains elusive. Here we describe the finding that NUCLEAR FACTOR-Y (NF-Y) genes are positive regulators of photomorphogenesis—i.e., in plants where NF-Y genes are mutated, they display some characteristics of dark grown plants, even though they are in the light. Our data suggests that the roles of NF-Y genes in light perception do not fit in easily with those of other described pathways. Thus, studying these genes promises to help develop a more complete picture of how light drives plant development.Yeshttp://www.plosgenetics.org/static/editorial#pee
    corecore