63 research outputs found

    Adaptive data synchronization algorithm for IoT-oriented low-power wide-area networks

    Get PDF
    The Internet of Things (IoT) is by now very close to be realized, leading the world towards a new technological era where people’s lives and habits will be definitively revolutionized. Furthermore, the incoming 5G technology promises significant enhancements concerning the Quality of Service (QoS) in mobile communications. Having billions of devices simultaneously connected has opened new challenges about network management and data exchange rules that need to be tailored to the characteristics of the considered scenario. A large part of the IoT market is pointing to Low-Power Wide-Area Networks (LPWANs) representing the infrastructure for several applications having energy saving as a mandatory goal besides other aspects of QoS. In this context, we propose a low-power IoT-oriented file synchronization protocol that, by dynamically optimizing the amount of data to be transferred, limits the device level of interaction within the network, therefore extending the battery life. This protocol can be adopted with different Layer 2 technologies and provides energy savings at the IoT device level that can be exploited by different applications

    MRE11 inhibition highlights a replication stress-dependent vulnerability of MYCN-driven tumors

    Get PDF
    MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors

    PO-076 Molecular analysis of BRCA-negative breast and/or ovarian cancer families by multigene panel testing

    Get PDF
    Introduction About 5%–10% of the hereditary breast and/or ovarian cancer (BC/BOC) is associated with an autosomal dominant genetic susceptibility due to highly penetrant mutations of the BRCA1/2 genes. In particular, BRCA1/2 gene mutations are found in 25%–30% of the BC families subjected to genetic testing. These numbers suggest the possible involvement of other genes in BC/BOC genetic predisposition and a fraction of these cases remains to be assigned to specific genetic factors. Here we report on the application of the NGS multigene panel to a group of BRCA1/2 mutation negative BC/BOC cases, in order to identify germline mutations that could further explain BC/BOC genetic susceptibility. Material and methods We selected a group of 27 BRCA1/2 negative BC and BOC families on the basis of a clear dominant inheritance pattern and/or a moderate/high BRCAPro score. We performed a genomic screening by a comprehensive multi-gene custom panel of 29 cancer-related genes, using Ion Torrent platform (Thermo Fisher Scientific). Results and discussions In three cases (11%) we found mutations described as pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/) in ATM, MUTYH and PALB2 genes. In the series analysed, the most frequently altered genes were APC and ATM (15%) but were also identified mutations in MSH6 and TP53 (11%), MUTYH and RAD51B (7%), MRE11, EPCAM, BRIP1, CHEK2, PALB2, BARD1, STK11 and RAD50 (4%). In particular, we found six genomic variants of uncertain significance (VUS) in MSH6, ATM, BRIP1, RAD50 and APC genes; nine genomic variants of conflicting interpretations of pathogenicity in MUTYH, MRE11, TP53, APC, MSH6, CHEK2, EPCAM and ATM genes and eight genomic variants not reported in ClinVar in APC, RAD51B, STK11, TP53, ATM and BARD1 genes predicted deleterious by in silico analysis. Their biological significance and involvement in the development of the pathology is still unknown today. Only six patients were negative for the presence of mutations in the 29 genes analysed. Conclusion Preliminary results of this study suggest that NGS could offer a great contribution to identify the genetic component of susceptibility to BC/BOC and could potentially be used with implications for clinical management and counselling of patients and their families. Moreover, our results suggest that multigene testing approach may benefit appropriately selected patients, especially those with increased risk of BC/BOC development

    Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma.

    Get PDF
    SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB

    Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis

    Get PDF
    Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis

    Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis

    Get PDF
    Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis

    Treatment with 8-OH-modified adenine (TLR7 ligand)-allergen conjugates decreases T helper type 2-oriented murine airway inflammation

    Get PDF
    A strategy to improve allergen-specific immunotherapy is to employ new adjuvants stably linked to allergens. The study is addressed to evaluate the in vivo and in vitro effects of allergens [natural Dermatophagoides pteronyssinus 2 (nDer p 2) and ovalbumin (OVA)] chemically bound to an 8-OH-modified adenine. Humoral and cellular responses were analysed in allergen-sensitized and challenged mice by using conjugates (Conj) in a therapeutic setting. The in vitro activity of the conjugates on cytokine production induced by bone marrow dendritic cells and the co-culture system was also investigated. The nDer p 2-Conj treatment in nDer p 2-primed and challenged BALB/c mice reduced the numbers of eosinophils in bronchoalveolar lavage fluid and lung, airway allergen-driven interleukin-13 (IL-13) production in lung mononuclear cells and IgE, in comparison with nDer p 2-treated mice. The increase of IgG2a paralleled that of interferon-γ (IFN-γ) and IL-10 in allergen-stimulated spleen cells. Similar effects were elicited by treatment with OVA-Conj in an OVA-driven BALB/c model. The nDer p 2-Conj or OVA-Conj redirected memory T helper type 2 cells towards the production of IL-10 and IFN-γ also in C57BL/6 mice and when subcutaneously administered. Interleukin-10, IL-12 and IL-27 were produced in vitro by Conj-stimulated bone marrow dendritic cells, whereas IL-10 and IFN-γ were up-regulated in co-cultures of CD11c(+) and CD4(+) T cells from Conj-treated mice stimulated with allergen. Cytofluorometric analysis indicated that the Conj expanded IFN-γ- and IL-10- producing memory T cells. The Conj effects on IL-10(−/−) and IL-12(−/−) mice confirmed the role of IL-10 and IFN-γ in inducing a protective and balanced redirection the T helper type 2-mediated airway inflammation

    A simplified genomic profiling approach predicts outcome in metastatic colorectal cancer

    Get PDF
    The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy

    Effects of an intensive inpatient rehabilitation program in elderly patients with obesity

    Get PDF
    Objective: The aim of this study was to assess the short-term effectiveness of an intensive inpatient multidimensional rehabilitation program (MRP), including diet, exercise, and behavioral therapy, in elderly patients with severe obesity. Methods: Forty-four elderly patients (old; age 69.3 \ub1 3.5 years, BMI 41.9 \ub1 14.9) were analyzed against 215 younger patients (young; age 48.2 \ub1 18.5 years, BMI 43.9 \ub1 9.4), who were used as controls. All patients underwent MRP, based on group therapy guided by a multidisciplinary team (physicians, dietitians, exercise trainers, psychologists). We evaluated changes in anthropometry, cardiovascular risk factors, physical fitness, quality of life, and eating behavior. Results: After 3 weeks of MRP, we observed a reduction in body weight (old -3.8%, young -4.3%), BMI (old -3.9%, young -4.4%), waist circumference (old -3.4%, young -4.1%), total cholesterol (old -14.0%, young -15.0%), and fasting glucose (old -8.3%, young -8.1%), as well as improved performance in the Six-Minute-Walk Test (old +28.7%, young +15.3%), chair-stand test (old +24.8%, young +26.9%), and arm-curl test (old +15.2%, young +27.3%). Significant improvement was registered in all other analyzed domains. Conclusion: Our 3-week MRP provided significant clinical and functional improvement, which was similar between elderly and younger patients with severe obesity. In the long-term, this may be translated into better quality of life, through better management of obesity-associated morbidities and reduced frailty
    • …
    corecore