111 research outputs found

    Testosterone-induced effects on lipids and inflammation

    Get PDF
    Chronic pain has to be considered in all respects a debilitating disease and 10-20% of the world's adult population is affected by this disease. In the most general terms, pain is symptomatic of some form of dysfunction and (often) the resulting inflammatory processes in the body. In the study of pain, great attention has been paid to the possible involvement of gonadal hormones, especially in recent years. In particular, testosterone, the main androgen, is thought to play a beneficial, protective role in the body. Other important elements to be related to pain, inflammation, and hormones are lipids, heterogenic molecules whose altered metabolism is often accompanied by the release of interleukins, and lipid-derived proinflammatory mediators. Here we report data on interactions often not considered in chronic pain mechanisms

    Cryobiology of cephalopod (Illex coindetii) spermatophores

    Get PDF
    P. 288-294Cephalopod culture is expected to increase in the near future and sperm cryopreservation would be a valuable tool to guarantee sperm availability throughout the year and to improve artificial insemination programs. We have studied the tolerance of spermatophores from the oceanic squid Illex coindetii to several cryoprotectants, in two toxicity experiments and a cryopreservation test. Five permeating cryoprotectants were tested: Dimethyl sulfoxide (Me2SO), methanol, glycerol, propylene glycol and ethylene glycol. In the first experiment, spermatophores were exposed to the five cryoprotectants at 5% (v/v) and 15% (v/v) at 4 °C for 5 min. In the second experiment, spermatophores were exposed to the cryoprotectants at 15% using different exposure times: 5, 15 and 30 min. In a third experiment, we tested two cryopreservation protocols: LN2 vapor or −80 °C freezer, using a 15% cryoprotectant and 15 or 30 min of exposure. Viability and mitochondrial activity were assessed using Mitotracker deep red, YOPRO1 and Hoechst 33342, by flow cytometry. Spermatozoa in this species remain viable after cryoprotectant exposure but their quality decreased considerably after cryopreservation, only 5–10% of spermatozoa being motile. Flow cytometry demonstrated that Me2SO may be the most appropriate cryoprotectant for I. coindetii spermatozoa, and shows a first approach on cephalopod sperm cryopreservation, opening new possibilities for the research and culture of this group of molluscs

    The Genome Sequence of "Candidatus Fokinia solitaria": Insights on Reductive Evolution in Rickettsiales

    Get PDF
    "Candidatus Fokinia solitaria" is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the "Candidatus Midichloriaceae" family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the pathway for the biosynthesis of lipopolysaccharides (present in all the other so far sequenced members of the family "Candidatus Midichloriaceae") or genes for the Krebs cycle (present, although not always complete, in Rickettsiales). These results indicate an evolutionary trend toward a stronger dependence on the host, in comparison with other members of the family. Two alternative scenarios are compatible with our results; "Candidatus Fokinia solitaria" could be either a recently evolved, vertically transmitted mutualist, or a parasite with a high host-specificity

    PO-076 Molecular analysis of BRCA-negative breast and/or ovarian cancer families by multigene panel testing

    Get PDF
    Introduction About 5%–10% of the hereditary breast and/or ovarian cancer (BC/BOC) is associated with an autosomal dominant genetic susceptibility due to highly penetrant mutations of the BRCA1/2 genes. In particular, BRCA1/2 gene mutations are found in 25%–30% of the BC families subjected to genetic testing. These numbers suggest the possible involvement of other genes in BC/BOC genetic predisposition and a fraction of these cases remains to be assigned to specific genetic factors. Here we report on the application of the NGS multigene panel to a group of BRCA1/2 mutation negative BC/BOC cases, in order to identify germline mutations that could further explain BC/BOC genetic susceptibility. Material and methods We selected a group of 27 BRCA1/2 negative BC and BOC families on the basis of a clear dominant inheritance pattern and/or a moderate/high BRCAPro score. We performed a genomic screening by a comprehensive multi-gene custom panel of 29 cancer-related genes, using Ion Torrent platform (Thermo Fisher Scientific). Results and discussions In three cases (11%) we found mutations described as pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/) in ATM, MUTYH and PALB2 genes. In the series analysed, the most frequently altered genes were APC and ATM (15%) but were also identified mutations in MSH6 and TP53 (11%), MUTYH and RAD51B (7%), MRE11, EPCAM, BRIP1, CHEK2, PALB2, BARD1, STK11 and RAD50 (4%). In particular, we found six genomic variants of uncertain significance (VUS) in MSH6, ATM, BRIP1, RAD50 and APC genes; nine genomic variants of conflicting interpretations of pathogenicity in MUTYH, MRE11, TP53, APC, MSH6, CHEK2, EPCAM and ATM genes and eight genomic variants not reported in ClinVar in APC, RAD51B, STK11, TP53, ATM and BARD1 genes predicted deleterious by in silico analysis. Their biological significance and involvement in the development of the pathology is still unknown today. Only six patients were negative for the presence of mutations in the 29 genes analysed. Conclusion Preliminary results of this study suggest that NGS could offer a great contribution to identify the genetic component of susceptibility to BC/BOC and could potentially be used with implications for clinical management and counselling of patients and their families. Moreover, our results suggest that multigene testing approach may benefit appropriately selected patients, especially those with increased risk of BC/BOC development

    Metachronous primary uterine cancer surgically resected during crizotinib treatment in a ALK-rearranged advanced lung adenocarcinoma

    Get PDF
    Rearrangements of the anaplastic lymphoma kinase (ALK) gene are present in 3% to 7% of nonsmall-cell lung cancers (NSCLCs). Patients harboring ALK rearrangements show very favourable outcomes if treated with targeted agents, among which crizotinib is the first and best studied. Crizotinib, an oral smallmolecule tyrosine kinase inhibitor of ALK, MET, and ROS1 kinases, is a very active and well tolerated drug. Nevertheless, the optimal therapy management with this new drug is still partially unknown, especially with regard to the safety of combined treatments. Recently, the integration of locoregional treatments has been proposed as a feasible multimodality strategy in selected patients with good clinical conditions and slowgrowing or oligoprogressive disease. In this report, a case of advanced lung adenocarcinoma, progressed after first line chemotherapy and re-biopsied detecting ALK rearrangement, is described. During crizotinib treatment the primary lung tumor showed an excellent regression; meanwhile a major surgery for a metachronous uterine cancer was safely and successfully carried out

    Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma.

    Get PDF
    SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB

    MRE11 inhibition highlights a replication stress-dependent vulnerability of MYCN-driven tumors

    Get PDF
    MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors

    A simplified genomic profiling approach predicts outcome in metastatic colorectal cancer

    Get PDF
    The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy

    Clinical Multigene Panel Sequencing Identifies Distinct Mutational Association Patterns in Metastatic Colorectal Cancer

    Get PDF
    Extensive molecular characterization of human colorectal cancer (CRC) via Next Generation Sequencing (NGS) indicated that genetic or epigenetic dysregulation of a relevant, but limited, number of molecular pathways typically occurs in this tumor. The molecular picture of the disease is significantly complicated by the frequent occurrence of individually rare genetic aberrations, which expand tumor heterogeneity. Inter- and intratumor molecular heterogeneity is very likely responsible for the remarkable individual variability in the response to conventional and target-driven first-line therapies, in metastatic CRC (mCRC) patients, whose median overall survival remains unsatisfactory. Implementation of an extensive molecular characterization of mCRC in the clinical routine does not yet appear feasible on a large scale, while multigene panel sequencing of most commonly mutated oncogene/oncosuppressor hotspots is more easily achievable. Here, we report that clinical multigene panel sequencing performed for anti-EGFR therapy predictive purposes in 639 formalin-fixed paraffin-embedded (FFPE) mCRC specimens revealed previously unknown pairwise mutation associations and a high proportion of cases carrying actionable gene mutations. Most importantly, a simple principal component analysis directed the delineation of a new molecular stratification of mCRC patients in eight groups characterized by non-random, specific mutational association patterns (MAPs), aggregating samples with similar biology. These data were validated on a The Cancer Genome Atlas (TCGA) CRC dataset. The proposed stratification may provide great opportunities to direct more informed therapeutic decisions in the majority of mCRC cases
    • …
    corecore