103 research outputs found

    Past, present and future of cyanide antagonism research: From the early remedies to the current therapies.

    Get PDF
    This paper reviews milestones in antidotal therapies for cyanide (CN) spanning early remedies, current antidotal systems and research towards next generation therapies. CN has been a part of plant defense mechanisms for millions of years. It became industrially important in the nineteenth century with the advent of CN assisted gold mining and the use of CN as a pest control agent. The biochemical basis of CN poisoning was actively studied and key mechanisms were understood as early as 1929. These fundamental studies led to a variety of antidotes, including indirect CN binders that generate methemoglobin, direct CN binders such as hydroxocobalamin, and sulfur donors that convert CN to the less toxic thiocyanate. Research on blood gases at the end of the twentieth century shed new light on the role of nitric oxide (NO) in the body. The discovery of NO's ability to compete with CN for enzymatic binding sites provided a previously missed explanation for the rapid efficacy of NO generating antidotes such as the nitrites. Presently used CN therapies include: methemoglobin/NO generators (e.g., sodium nitrite, amyl nitrite, and dimethyl aminophenol), sulfur donors (e.g., sodium thiosulfate and glutathione), and direct binding agents [(e.g., hydroxocobalamin and dicobalt salt of ethylenediaminetetraacetic acid (dicobalt edetate)]. A strong effort is being made to explore novel antidotal systems and to formulate them for rapid administration at the point of intoxication in mass casualty scenarios. New antidotes, formulations, and delivery systems are enhancing bioavailability and efficacy and hold promise for a new generation of improved CN countermeasures

    Organ-distribution of the Metabolite 2-Aminothiazoline-4-Carboxylic Acid in a Rat Model following Cyanide Exposure

    Get PDF
    The reaction of cyanide (CN−) with cystine to produce 2-aminothiazoline-4-carboxylic acid (ATCA) is one of the independent detoxification pathways of cyanide in biological systems. In this report, in vivo production of ATCA and its distributions in plasma and organs were studied after a subcutaneous sublethal dose of 4 mg/kg body weight potassium cyanide (KCN) administration to rats. At this sublethal dose of KCN, ATCA concentration was not significantly increased in the plasma samples, however, it was found significantly increased in liver samples. These results suggested that ATCA might not be a good diagnostic biomarker in plasma for sublethal cyanide exposure; however, liver could serve as the right organ for the detection of ATCA in post-mortem examinations involving cyanide exposure in military, firefighting, industrial and forensic settings

    Determination of Dimethyl Trisulfide in Rabbit Blood Using Stir Bar Sorptive Extraction Gas Chromatography-mass Spectrometry

    Get PDF
    Cyanide poisoning by accidental or intentional exposure poses a severe health risk. The current Food and Drug Administration approved antidotes for cyanide poisoning can be effective, but each suffers from specific major limitations concerning large effective dosage, delayed onset of action, or dependence on enzymes generally confined to specific organs. Dimethyl trisulfide (DMTS), a sulfur donor that detoxifies cyanide by converting it into thiocyanate (a relatively nontoxic cyanide metabolite), is a promising next generation cyanide antidote. Although a validated analytical method to analyze DMTS from any matrix is not currently available, one will be vital for the approval of DMTS as a therapeutic agent against cyanide poisoning. Hence, a stir bar sorptive extraction (SBSE) gas chromatography – mass spectrometry (GC–MS) method was developed and validated for the analysis of DMTS from rabbit whole blood. Following acid denaturation of blood, DMTS was extracted into a polydimethylsiloxane-coated stir bar. The DMTS was then thermally desorbed from the stir bar and analyzed by GC–MS. The limit of detection of DMTS using this method was 0.06 μM with dynamic range from 0.5–100 μM. For quality control standards, the precision, as measured by percent relative standard deviation, was below 10%, and the accuracy was within 15% of the nominal concentration. The method described here will allow further investigations of DMTS as a promising antidote for cyanide poisoning

    Spectrophotometric Analysis of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid (ATCA)

    Get PDF
    Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations in aqueous media. This study was focused on the spectrophotometric ATCA determination in the presence of cyanide, thiocyanate (SCN−), cysteine, rhodanese, thiosulfate, and other sulfur donors. The method involves a thiazolidine ring opening in the presence of p-(hydroxy-mercuri)-benzoate, followed by the reaction with diphenylthiocarbazone (dithizone). The product is spectrophotometrically analyzed at 625 nm in carbon tetrachloride. The calibration curve was linear with a regression line of Y = 0.0022x (R2 = 0.9971). Interference of cyanide antidotes with the method was determined. Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese did not appreciably interfere with the analysis, but SCN− and cysteine significantly shifted the standard curve. This sensitive spectrophotometric method has shown promise as a substitute for the measurement of the less stable cyanide

    Liposomes for topical use: physico-chemical comparison of vesicles prepared from egg or soy lecithin

    Get PDF
    Developments in nanotechnology and in the formulation of liposomal systems provide the opportunity for cosmetic dermatology to design novel delivery systems. Determination of their physico-chemical parameters has importance when developing a nano-delivery system. The present study highlights some technological aspects/characteristics of liposomes formulated from egg or soy lecithins for topical use. Alterations in the pH, viscosity, surface tension, and microscopic/macroscopic appearance of these vesicular systems were investigated. The chemical composition of the two types of lecithin was checked by mass spectrometry. Caffeine, as a model molecule, was encapsulated into multilamellar vesicles prepared from the two types of lecithin: then zeta potential, membrane fluidity, and encapsulation efficiency were compared. According to our observations, samples prepared from the two lecithins altered the pH in opposite directions: egg lecithin increased it while soy lecithin decreased it with increased lipid concentration. Our EPR spectroscopic results showed that the binding of caffeine did not change the membrane fluidity in the temperature range of possible topical use (measured between 2 and 50 °C). Combining our results on encapsulation efficiency for caffeine (about 30% for both lecithins) with those on membrane fluidity data, we concluded that the interaction of caffeine with the liposomal membrane does not change the rotational motion of the lipid molecules close to the head group region. In conclusion, topical use of egg lecithin for liposomal formulations can be preferred if there are no differences in the physico-chemical properties due to the encapsulated drugs, because the physiological effects of egg lecithin vesicles on skin are significantly better than that of soy lecithin liposomes

    Determination of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid in Urine and Plasma by Gas Chromatography–mass Spectrometry

    Get PDF
    The cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites. A simple, sensitive, and specific method based on derivatization and subsequent gas chromatography–mass spectrometry (GC–MS) analysis was developed for the identification and quantification of ATCA in synthetic urine and swine plasma. The urine and plasma samples were spiked with an internal standard (ATCA-d2), diluted, and acidified. The resulting solution was subjected to solid phase extraction on a mixed-mode cation exchange column. After elution and evaporation of the solvent, a silylating agent was used to derivatize the ATCA. Quantification of the derivatized ATCA was accomplished on a gas chromatograph with a mass selective detector. The current method produced a coefficient of variation of less than 6% (intra- and interassay) for two sets of quality control (QC) standards and a detection limit of 25 ng/ml. The applicability of the method was evaluated by determination of elevated levels of ATCA in human urine of smokers in relation to non-smokers for both males and females

    Simultaneous Determination of Cyanide and Thiocyanate in Plasma by Chemical Ionization Gas Chromatography Mass-spectrometry (CI-GC-MS)

    Get PDF
    An analytical method utilizing chemical ionization gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocyanate in plasma. Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide and simultaneous extraction of the product into ethyl acetate facilitated by a phase-transfer catalyst, tetrabutylammonium sulfate. The limits of detection for cyanide and thiocyanate were 1 μM and 50 nM, respectively. The linear dynamic range was from 10 μM to 20 mM for cyanide and from 500 nM to 200 μM for thiocyanate with correlation coefficients higher than 0.999 for both cyanide and thiocyanate. The precision, as measured by %RSD, was below 9 %, and the accuracy was within 15 % of the nominal concentration for all quality control standards analyzed. The gross recoveries of cyanide and thiocyanate from plasma were over 90 %. Using this method, the toxicokinetic behavior of cyanide and thiocyanate in swine plasma was assessed following cyanide exposure

    Cyanide Toxicokinetics: The Behavior of Cyanide, Thiocyanate and 2-Amino-2-Thiazoline-4-Carboxylic Acid in Multiple Animal Models

    Get PDF
    Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN−) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250–300 g), (ii) rabbits (3.5–4.2 kg) and (iii) swine (47–54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN−. Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN−t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN−concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN− in each animal model and ATCA may be used when the ATCA detoxification pathway is significant
    • …
    corecore