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Methods of directly evaluating cyanide levels are limited by the
volatility of cyanide and by the difficulty of establishing steady-
state cyanide levels with time. We investigated the measurement
of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid
(ATCA), in an attempt to circumvent the challenge of directly
determining cyanide concentrations in aqueous media. This study
was focused on the spectrophotometric ATCA determination in
the presence of cyanide, thiocyanate (SCN−), cysteine, rhodanese,
thiosulfate, and other sulfur donors. The method involves a
thiazolidine ring opening in the presence of p-(hydroxy-mercuri)-
benzoate, followed by the reaction with diphenylthiocarbazone
(dithizone). The product is spectrophotometrically analyzed at
625 nm in carbon tetrachloride. The calibration curve was
linear with a regression line of Y = 0.0022x (R2 = 0.9971).
Interference of cyanide antidotes with the method was determined.
Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese
did not appreciably interfere with the analysis, but SCN− and
cysteine significantly shifted the standard curve. This sensitive
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spectrophotometric method has shown promise as a substitute for
the measurement of the less stable cyanide.
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INTRODUCTION
Determination of cyanide or its metabolites in biological

fluids is necessary for forensic, clinical, military, research, and
veterinary purposes. Hydrogen cyanide’s (HCN) volatility and
nucleophilic nature (Troup and Ballantyne 1987; McMillan
and Svoboda 1982) make it difficult to accurately determine
concentrations of HCN in biological matrices directly. HCN
is rapidly depleted from blood, generally within the first
20 min of exposure (Baskin and Brewer 1997; Moriya and
Hashimoto 2001; Sylvester et al. 1981). In addition to rapidly
decreasing concentrations of HCN in biological fluids, cyanide
sometimes forms as an artifact of storage conditions in a
variety of biological samples, including blood (Seto 1996;
Ballantyne 1977, 1987; Curry et al. 1967; Sunshine and Finkle
1964).
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FIG. 1. ATCA formation and subsequent degradation and derivatization reactions used to analyze ATCA.
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Common metabolites of HCN include thiocyanate (SCN−)
and 2-aminothiazoline-4-carboxylic acid (ATCA). Most of the
investigative effort on the metabolism of cyanide has focused
on the formation of SCN−, the major metabolite of cyanide, in
the presence of sulfur donors. This process is catalyzed by the
mitochondrial enzyme, thiosulfate (cyanide sulfurtransferase
(EC 2.8.1.1)), which is also known by its trivial name of rho-
danese (Himwich and Saunders 1948). Under some conditions,
other detoxification mechanisms may also become important
for cyanide metabolism. For example, chronic administration
of cyanide depletes sulfur donors preventing the formation
of SCN−, which may increase the importance ATCA as an
alternative biotransformation pathway (Baskin et al. 2004; Isom
and Baskin 1997; Lundquist et al. 1995). Another important
condition that may shift cyanide metabolism in favor of ATCA
is the acidosis that accompanies HCN intoxication. The optimal
pH for rhodanese is 8.5, so as bodily pH becomes more acidic,
the formation of ATCA may become the major pathway of
cyanide metabolism.

ATCA is formed when cyanide reacts with cystine and is
present as a tautomer between itself and 2-imino-thioazolidine-
4-carboxylic acid (ITCA) (Lundquist et al. 1995). Metabolism
of cyanide to ATCA accounts for approximately 20% of cyanide
metabolism and increases as cyanide toxicity increases (Baskin
and Brewer 1997). ATCA is stable for months in biological
samples at freezing and ambient temperatures (Lundquist et al.
1995). Detection of ATCA, a stable cyanide metabolite, can
serve as a suitable method to monitor cyanide toxicity and
circumvent the disadvantages of other analytical methods.
Earlier studies demonstrated the effectiveness of the ITCA
determination method to establish cyanide exposure levels
(Lundquist et al. 1995). Developing a simple GC-MS method
(Logue et al. 2004, 2005) provided a tool for determining
elevated ITCA levels in human urine, comparing smokers to
nonsmokers for both male and female.

In this study, a simple spectrophotometric method to
determine aqueous concentrations of ATCA is investigated
with and without common cyanide antidotes present. The
method involves a thiazolidine ring opening in the presence
of p-(hydroxy-mercuri)-benzoate, followed by the reaction of
diphenylthiocarbazone (dithizone) (Fig. 1).

MATERIALS AND METHODS

ATCA Synthesis
ATCA was prepared from L-cysteine (Nagasawa et al. 2004).

NaHCO3 (2.8 g, 33 mmol) and cyanamide (1.4 g, 33 mmol)
were added to L-cysteine hydrochloride (anhydrous, 5.2 g,
33 mmol) dissolved in 50 mL deionized H2O. The mixture
was heated under reflux and a continuous nitrogen gas flush was
maintained for 8 h. Water was occasionally added to replace the
evaporative loss, and the pH of entrained gases was monitored
at the condenser outlet with Instachek 1-14 pH papers. The pH
remained consistent at 10 to 11 (apparently reflecting evolution

of gaseous NH3) until the reaction was nearly complete, at
which time it decreased to ∼8 to 9, and reflux was discontinued.
The reaction mixture was concentrated on a rotary evaporator
to approximately 25% of the original volume when crystals
spontaneously precipitated. Following overnight refrigeration,
the precipitate was collected (0.98 g) and the filtrate was
evaporated to a dry, white residue. The residue was dissolved
in a few milliliters of hot H2O and upon cooling produced
1.38 g of crystals. The solids were combined, recrystallized from
H2O/ethanol, 1:5, and dried over P4O10 to yield 1.89 g (39%)
of white crystals, mp 225 to 235◦C (decomposition). Melting
points were taken on a hot-stage melting point apparatus and are
uncorrected. Thin layer chromatography was performed using
silica gel GF Uniplates from Analtech (Analtech, Inc., Newark,
DE) (TLC (n-butanol/acetic acid/H2O, 4:1:1) Rf = 0.30) and
reaction products visualized by fluorescence quenching under
short-wave UV light and by exposure to iodine vapor in an
iodine chamber.

Analysis (C4H6N2O2S): (cal/found) C = 32.87/32.95; H =
4.14/4.07; N = 19.17/19.02. [α]D23 −96.9 (c 1.04, H2O). Mi-
croanalysis was performed by M-H-W Laboratories, Phoenix,
AZ.

Synthesis of Butanethiosulfonate (BTS)
BTS was prepared as a sodium salt from butanesulfonyl

chloride and sodium sulfide by the method of Traeger and Linde
(1901) with minor modifications. Sodium sulfide (Na2S.9H2O)
(45.2 mmol; 10.88 g) was dissolved in deionized distilled water
(40 mL) maintained at 95 to 100◦C; butanesulfonyl chloride
(45.2 mmol) was slowly added, and the reaction mixture was
refluxed with stirring for 10 to 12 h. The solvent was removed
with a rotating evaporation in vacuo, and hot ethanol was
added to dissolve the product from the solid residue and
thereby separate it from sodium chloride. The crude product
was purified by repeated recrystallization from 95% ethanol
and subsequent chromatography on a silica gel column (70–
230 mesh, 60 Å, 5 µm spherical, 2.5 × 32.0 cm) obtained
from Aldrich Chemical Co, Inc. (Milwaukee, WI) with a solvent
system of ethylacetate:methanol:water (6:3:0.05 v/v). BTS was
prepared for chromatography by dissolving it in 95% ethanol
and mixing it with 10% silica. After solvent removal, the
dry mixture of silica and BTS was carefully layered on the
top of the column and was developed with the eluent solvent
system. The chemical reaction was monitored by thin layer
chromatography, and the purity was determined by HPLC
analysis, proton NMR, and reactive sulfur assay. The HPLC
spectra were recorded on a Rainin Gradient HPLC system with
a Hitachi UV spectrophotometric detector, using a Brownlee
column (spherical silica, 5 µm, 0.46 × 10 cm) with amino
polar phase that was obtained from Rainin Instrument Co, Inc.
(Woburn, MA). Proton NMR spectra were recorded on a Varian
Gemini spectrometer for D2O solution (δ scale, DSS as internal
standard) (200 MHz).
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FIG. 2. Calibration curve of ATCA (0–200 µM). Linear correlation of the data (y = 0.0022x) gave a correlation coefficient of 0.9971.

Preparation of Rhodanese, Rhodanese
Activity Determination

Bovine liver rhodanese was purified as described previously
(Leung et al. 1986) using the method of Westley (1981).
In addition, the enzyme was further purified by size ex-
clusion chromatography (Sephacryl S-200 Pharmacia LKB
Biotechnology, Piscataway, NJ). Formation of thiocyanate
was measured spectrophotometrically at periodic intervals as
described by Westley (1981) using the method of Mintell
and Westley (1966). Rhodanese activity was determined by
suspending an aliquot (10–100 µl) in a phosphate buffer solution
containing 50 mM KCN and 50 mM Na2S2O3. One unit of
rhodanese (RU) is designed as the amount of enzyme that
catalyzes the production of 1 µmol of thiocyanate/min at
22◦C.

ATCA Analysis
The method of Brandham et al. (1965) was slightly modified

for this study. Briefly, to a sample containing 500 µl of 20
to 200 nmol/mL ATCA, 500 µl each of 400 µM p-(hydroxy-
mercuri)benzoate reagent (in 0.1 M phosphate buffer, pH =
7.0) and 0.5 mL of 2.0 M NaOH were added. The sample
solutions were heated to boiling for 1 h. After cooling, 200
µl of 3.2 M citric acid solution was added to buffer the solution
to pH = 6. Five milliliters of diphenylthiocarbazone(dithizone)
reagent (40 µg/mL in CCl4, diluted threefold freshly before use)
was added and the mixture was vortexed vigorously for 60 sec.
After the two phases separated, the absorbance of the organic
phase was measured at 625 nm on a Shimadzu UV-2101 PC
spectrophotometer.

To determine the viability of the spectrophotometric method
for the determination of ATCA concentrations in the presence
of various compounds associated with cyanide poisoning or
cyanide antidotes, the ATCA concentration in the assay solution
was kept constant (100 µM) and the concentrations of the
substances were varied from 10 to 250 µM. The absorbance

was monitored as the concentration of these possible interfering
compounds was increased.

RESULTS
Figure 2 shows the standard curve for the ATCA. The

absorbance changed linearly with the amount of ATCA within
the concentration range studied (0–200 µM). Each data point
represents the arithmetic mean of three independent measure-
ments. The equation for the linear regression line is y = 0.0022x,
with a correlation coefficient of 0.9971. The relative percentage
deviation (RPD) for each data point was less than 10%. It is
shown (Fig. 2) that the sensitivity to ATCA is considerable in
this assay.

To determine the effects of various cyanide antidotes and
other potential interferents on this analysis method, the ATCA
concentration was kept constant (100 µM) and the concen-
trations of the test compounds thiosulfate, BTS, rhodanese,
cysteine, cyanide, and SCN− were varied. In Figures 3 and 4,
the ratio of ATCA in the presence of increasing concentrations
of each test compound is given relative to ATCA alone. For
example, the absorbance of 100 µM ATCA in the presence
of increasing concentrations of thiosulfate is given as relative
absorbance. Relative absorbance = absorbance of (ATCA
+ thiosulfate)/absorbance of ATCA alone. Each point was
determined as a result of three measurements and expressed
as the arithmetic mean ±% CV, and is graphed as a percentage,
with 100% indicating no interference was detected.

Thiosulfate did not interfere with the ATCA determination.
The linear fit gave a slightly positive slope of 0.055. The slope of
the fitting line with the BTS was also slightly positive (0.059).
The relative absorbance decreased with increasing rhodanese
concentration, giving a definite negative slope for the final fitted
curve (slope = –0.144). The relative absorbance curve showed a
maximum at the cysteine concentration of 30 µM, but at higher
cysteine concentrations there were no notable changes in the
absorbance. Cyanide did not show any remarkable effects on
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FIG. 3. Relative absorbance of ATCA with increasing concentrations of thiosulfate, BTS, cyanide, and rhodanese. These substances were found to not interfere
with ATCA determination by the spectrophotometric method.

the absorbance. SCN− produced the most remarkable changes
in the relative absorbance curve. A linear regression analysis of
the data for the cysteine and SCN− gave r2 values of 0.33 and
0.37, respectively, which suggests that the linear fit is inadequate
for the data shown in Figure 4.

DISCUSSION
The major metabolic product of cyanide is SCN−, especially

in the liver, where plenty of rhodanese is present to catalyze
the conversion of cyanide to the less toxic SCN− (Isom and
Baskin 1997). Therefore, cyanide does not have remarkable
liver toxicity. The major target organs for cyanide toxicity
are the brain and heart. In these organs the rhodanese level
is low; therefore, the SCN− formation is suppressed, and the
formation of ATCA becomes important. It is known that ATCA
is a neurotoxic agent causing hippocampal damage (Bitner
et al. 1997). ATCA is formed from cystine and it is present
in equilibrium with the 2-iminothiazolidine-4-carboxylic acid

(ITCA) form. At pH = 7.4 it is mainly present as ATCA
(Nagasawa et al. 2004). To determine the ATCA distribution
in the body it was necessary to determine how the other
substances, which are participating in one of the metabolic
pathways in the body, interfere with ATCA measurements.
Lundquist (1995) published an HPLC method to analyze ATCA,
but that method involves a derivatization step, making it cost,
time, and labor intensive. The present method is relatively
sensitive, simple, and fast. The standard curve gave a good
correlation (r2 > 0.99) using p-(hydroxy-mercuri)-benzoate and
diphenylthiocarbazone (dithizone) reagents.

Thiosulfate, BTS, rhodanese, and cyanide did not signifi-
cantly interfere with the analysis, as all absorbance measure-
ments were within a 10% RPD. In this study, both cysteine
and SCN− interfere, requiring further studies to determine the
mechanism. Based on these studies, the present ATCA analysis
method seems to be a suitable method for the measurement
of the cellular and tissue distribution of ATCA. This should
contribute to an understanding of the mechanism of the toxicity
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FIG. 4. Relative absorbance of ATCA with increasing concentrations of thiocyanate and cysteine. Both thiocyanate and cysteine interfere with the analysis of
ATCA by this method.

of ATCA, and of cyanide itself, in an aspect different from
the study of cyanide alone. Although the toxicity of ATCA
has rarely been studied, it is known that it has excitotoxic
properties, which can cause hippocampal damage (Bitner
et al. 1997). Death occurred following convulsions after CNS
ATCA injection (A. Kanthasamy, personal communication).
Therefore, besides the possibility of using ATCA as an improved
marker of cyanide intoxication, if ATCA is found to play a
major role in cyanide-induced neurotoxicity, antagonism of
ATCA may serve as a tool against cyanide toxicity. This
spectrophotometric method could serve as a substitute for the
measurement of the less stable cyanide in tissues where SCN−

and cysteine are not accumulated in appreciable concentrations
or following sample preparation by solid-phase extraction.
Development of a more sensitive (Fig. 2) and specific analytical
technique is necessary to determine the potential of ATCA as
a replacement for cyanide determination in biological matrices.
In addition, while the interaction of cystine and cyanide to
form ITCA and ATCA accounts for approximately 20% of
cyanide metabolism, and increases with cyanide dosage (Baskin
and Brewer 1997), correlation between in vivo ATCA levels
and cyanide dosing will require tissue studies. However, this

method has the potential to allow for a simpler approach to
the measurement of a metabolite that is more stabile than
cyanide.
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