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Introduction

Human metabolism of cyanide and detection of its bio-
markers has been described in detail by Baskin et  al. 
(1997, 2006). Briefly, thiocyanate (SCN−), 2-aminothi-
azoline-4-carboxylic acid (ATCA), and cyanide-protein 
adducts in biological fluids and tissues are alterna-
tive biomarkers for cyanide exposure and poisoning. 
Although SCN− is the major cyanide metabolite found in 
blood (Baskin et al. 2004), it is also a natural metabolite 
of non-cyanide mediated pathways and thus it is not a 
specific marker for cyanide poisoning (Ballantyne et al. 
1977). On the other hand, ATCA has been identified and 
suggested as an alternative chemically stable biomarker 
for cyanide exposure (Logue et al. 2010). Unfortunately, 
ATCA half-life and distribution of ATCA due to cyanide 
exposure have not yet been studied or published. The 
purpose of this study was to evaluate the potential use of 
ATCA as a diagnostic biomarker for cyanide poisoning 

by: (1) in vivo measurements of ATCA concentrations 
in plasma, and (2) post-mortem measurements of the 
distribution of ATCA amongst organs following cyanide 
exposure in a rat system.

Cyanide exposure occurs in military, firefighting, 
industrial and forensic settings. Although potassium 
cyanide (KCN) can be produced from a non-toxic source, 
such as cooking potassium ferrocyanide (Musshoff et al. 
2011), cyanide exposures most commonly originate from 
smoke inhalation or direct exposure to either cyanide salt 
or hydrogen cyanide (HCN). In an ambient environment, 
cyanide salts usually appear as white crystalline powders, 
while HCN is present as colorless (or pale blue) liquid or 
as gas with a bitter almond-like odor (Lv et al. 2005). In 
the investigation of deaths, a bitter almond odor emanat-
ing from the victim, and the presence of pink lividity from 
post-mortem examination are two common indicators of 
acute cyanide poisoning (Gill et  al. 2004). Alkali burns 
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of the gastrointestinal tract tract can often be observed 
during autopsy in cases where cyanide salts have been 
ingested. Since cyanide salts are solid crystalline, their 
presence in a crime scene or in the areas near victim’s 
nose or mouth can be easily discovered, collected and 
preserved for further forensic testing. In cases where 
no suspicious substances are observed at the scene of 
death, the presence of cyanide in the victim’s body can 
be confirmed chemically using a colorimetric test, fol-
lowed by laboratory analysis using gas chromatography 
mass spectrometry (GC–MS). Forensic evidences, such 
as stomach contents and whole blood of the victims, are 
usually collected and analysed in order to confirm the 
cause of death (Laforge et al. 1994).

The toxicological detection of cyanide involves 
extraction and measurement of HCN from biological 
extracts (Darr et  al. 1980; Shiono et  al. 1991). Blood or 
urine can be collected from the victim for laboratory 
analysis (Lundquist et  al. 1989; McAuley et  al. 1983; 
Zamecnik et  al. 1987). Due to the relatively short half-
life of cyanide (from minutes to hours depending on the 
matrix), toxicological detection of cyanide to confirm 
cyanide poisoning may only be feasible within the first 
few hours following exposure (Calafat & Stanfill 2002; 
Moriya & Hashimoto 2001). Moreover, the volatility and 
reactivity of cyanide give direct measurements highly 
susceptible to errors introduced during the sample col-
lection and separation step (Lindsay et al. 2004). Cyanide 
levels in blood samples taken at autopsy the next day 
have been reported to decrease by approximately 79% 
(Curry 1963). Post-mortem formation of cyanide may 
also occur and complicates the interpretation of cyanide 
results (McAllister et al. 2008). Therefore, the presence of 
cyanide becomes less feasible when the detection win-
dow is passed or the victims’ body has been damaged, 
such as might be the case when autopsies are delayed 
or when tissues have been damaged by fire or advanced 
decomposition. The detection of stable biomarkers of 
cyanide is a promising approach to extend the time in 
which cyanide exposure can be reliably assayed in a 
post-mortem examination.

Materials and methods

Chemicals and samples
All solvents used in this study were at least HPLC grade. 
Trifluoroacetic acid (TFA) was obtained from EMD 
Chemicals (Gibbstown, NJ, USA) and used to prepare 
0.5% (v/v) TFA in methanol as the mobile phase. ATCA 
was obtained from Chem-Impex International (Wood 
Dale, IL, USA). 2-Aminothiazole-4-carboxylic acid (ATZA) 
was obtained from Synthonix (Wake Forest, NC, USA). 
KCN was purchased from Sigma-Aldrich (St. Louis, 
MO, USA). For in vivo study, serial dilutions were used 
to produce aqueous KCN solutions of systematically 
decreasing concentration. Oasis® MCX (mixed-mode 
cation exchange) cartridges were obtained from Waters 
Corporation (Milford, MA, USA).

Animals
Male CD rats weighing 250–300 grams with catheters 
implanted were purchased from Charles River (Charles 
River Breeding Laboratories, Inc., Wilmington, MA, 
USA) The experimental animals were housed in tem-
perature and light controlled rooms (22 ± 2°C, 12 h light/
dark cycle). They were furnished with water and Teklad 
Rodent Diet (W) 8604 (Teklad HSD, Inc., WI, USA)  
ad libitum. All animal procedures were conducted 
in accordance with the guidelines in The Guide for 
the Care and Use of Laboratory Animals (National 
Academic Press, 1996). The research facility was accred-
ited by American Association for the Assessment and 
Accreditation of Laboratory Animal Care, International 
and this animal study was approved by the Institutional 
Animal Care and Use Committee at Sam Houston State 
University (SHSU).

In vivo production of ATCA in plasma
Three rats were received 4 mg/kg body weight KCN solu-
tion subcutaneously. Before injection, blood was drawn 
to establish baseline endogenous ATCA levels at the zero 
time point. After exposing the rats by injecting the KCN 
solutions subcutaneously, blood samples were taken 
through the catheters at the following time intervals: 5, 
15, 30, 60 min, and 2, 4, 6, 12, 15, 50.5 h. For each with-
drawal of blood, lock solutions were drawn out till blood 
appeared in the catheter; 320 μL blood was collected from 
each rat; 320 μL of isotonic saline was injected back into 
the rat and the catheter was resealed with 100 μL of the 
lock solution. Individual samples were deposited into a 
15 mL tube (15 mL/tube) that had been pre-washed with 
heparin to prevent coagulation. The heparinized blood 
samples were than centrifuged at 2000 rpm for 10 min at 
+4°C (VWR Model 5810R, VWR International, Dallas, TX 
75267) to prepare plasma samples for ATCA analysis.

Organs distribution study
Following the plasma measurements discussed above, 
different groups of animals were used in a series of mea-
surements (Table 1) to determine organ-distribution 
of ATCA following sublethal cyanide exposure. Organs 
(liver, heart, kidneys, spleen, brain, and lungs) of the rats 
were collected after subcutaneous injection of KCN at 
sublethal dose of 4 mg/kg body weight. KCN was injected 
with a 25 G × 1½ needle. Rats were terminated at 30 and 
60 min, 4 and 12 h after cyanide exposure and organs 
were collected. Organ samples were placed into plas-
tic 3 mL tubes and stored in the freezer until they were 
thawed for analysis.

Sample preparations and ATCA measurement
Cation exchange solid-phase extraction (SPE) columns 
and individual pre-treatment steps for the extraction 
and analysis of ATCA from biological samples have 
been reported (Bradham et  al. 1965; Lundquist et  al. 
1995). In our work, ATCA was extracted from biologi-
cal samples by SPE. Detection and quantification of 
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ATCA was accomplished by using a liquid chromatog-
raphy-tandem mass spectrometer (LC-MS/MS). Sample 
preparation and instrumentation details of electrospray 
ionization/tandem mass spectrometer (ESI/MS/MS) 

for the detection of ATCA can be found in our previ-
ous report (Jackson et  al. 2010). Briefly, tissue samples 
were homogenized with ready-to-use Precellys® 
lysing kits on a Precellys-24 tissue homogenizer (Bertin 
Technologies, France). ATCA was extracted from 
homogenates by SPE, which was performed in a glass  
manifold equipped with Teflon needle inserts and evacu-
ated with a Buchi V-700 Vacuum Pump (Mallinckrodt 
Baker, Inc., Phillipsburg, NJ, USA). After SPE, Pierce 
Reacti-Therm II Heating Module was used to stream air to 
dry elution solvent in borosilicate glass disposable culture 
tubes (13 × 100 mm). A Shimadzu liquid chromatograph 
(LC-20AT, Shimadzu, Columbia, MD, USA) coupled to a 
tandem mass spectrometer (API 3200 ESI/MS/MS system, 
Applied Biosystems, Foster City, CA, USA) was employed 
for the LC-MS/MS separation, detection and quantifica-
tion of ATCA. A Luna CN column (3 micron, 100 × 2 mm; 
Phenomenx; Torrance, CA, USA) was used for the sepa-
ration. A 5 μL aliquot of sample after SPE was injected to 

the LC-MS/MS by an auto-sampler, and eluted isocrati-
cally at a 0.5 mL/min flow rate. Electrospray ionization 
(ESI) was used at the LC and MS/MS interface. Transition 
ions of ATCA (m/z 147+ → 101+) and ATZA (m/z 145+ 
→ 127+) were monitored under multiple reaction moni-
toring mode. The conditions of ESI were as follows: Ion 
spray voltage: +5500 volts, temperature: 450°C, curtain 
gas 50 psi, gas 1: 70 psi, gas 2: 20 psi. The MS/MS param-
eters were as follows: Collision gas (collision-activated 
dissociation): 6 psi, collision cell entrance potential: 14 
volts, and the collision cell exit potential: 4 volts.

Results

Plasma ATCA concentration after cyanide exposure
As shown in Figure 1, the endogenous level of ATCA in 
these experimental rats was 222 ± 19 (n = 3) ng/mL. The 
mean of ATCA level in plasma after KCN exposure within 
the experimental period was 203 ± 26 (n = 30) ng/mL. 
This result suggests that ATCA concentrations in plasma 
samples were not increased when the experimental  
animals (rats) were exposed to the sublethal dose of 
4 mg/kg body weight of KCN.

Table 1.  Organ collection for ATCA measurement.
Organ sampling groups
 30 min 60 min 4 h 12 h
4 mg/kg Rat #4 Terminate    
4 mg/kg Rat #5 Terminate    
4 mg/kg Rat #6 Terminate    
4 mg/kg Rat #7  Terminate   
4 mg/kg Rat #8  Terminate   
4 mg/kg Rat #9  Terminate   
4 mg/kg Rat #10   Terminate  
4 mg/kg Rat #11   Terminate  
4 mg/kg Rat #12   Terminate  
4 mg/kg Rat #13    Terminate
4 mg/kg Rat #14    Terminate
4 mg/kg Rat #15    Terminate
Note: Rats #1–#3 were used for the measurement of endogenous ATCA levels in organs.

Figure 1.  Plasma ATCA concentration after cyanide exposure (4 mg/kg body weight KCN administration (sc) to rats).
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ATCA concentrations in organs after cyanide exposure
As shown in Figure 2, ATCA concentration levels in organs 
were all increased after injection of KCN. The increase in 
ATCA concentration was most significant in the liver, ris-
ing from an endogenous level of 0.85 ± 0.4 (n = 3) µg/g to 
a level of 33 ± 7 (n = 3) µg/g at 12 h after exposure.

Discussion

The primary purpose of this toxico-kinetics study, funded 
by National Institute of Health (NIH), was to determine 
the role of ATCA to serve as a diagnostic biomarker for 
detecting cyanide exposure. Based on the results of this 
study, ATCA was not proved to be a good diagnostic 
biomarker when analysing plasma in the species of rat 
after sublethal dose cyanide exposure. Ongoing studies 
are focusing on higher, but still sublethal doses of KCN 
(8 mg/kg body weight) exposures, and collecting urine as 
well as an alternative biological matrix to analyse ATCA 
level as a part of the search for diagnostic biomarkers for 
cyanide exposure.

When analysing various organs, such as liver, kidney, 
heart, spleen, brain and lungs, these results suggest that 
ATCA potentially can serve as a forensic biomarker for 
post-mortem examination of victims of cyanide expo-
sure. The purpose of forensic toxicological test for cya-
nide is to provide quantitative analysis of cyanide from 
samples collected from a victims’ body. Usually, whole 
blood is tested. Natural dietary and pulmonary intake of 
cyanide from the environment, such as cyanogenic gly-
cosides in food, vehicle exhaust, cigarette, smoke from 
fires, leads to a non-zero cyanide background level in the 
body (Noguchi et al. 1988). For example, the burning of 
nitrogen-containing polymeric materials can introduce 
sufficient HCN to be lethal for those enhaling the smoke 
(Ishii et al. 1998). Human endogenous levels of cyanide 
are typically less than 40 ng/mL in plasma. Cyanide con-
centrations greater than 2500 ng/mL are fatal in humans. 
Thus, the lethal dose of HCN of human is about 1 mg/kg 
body weight. In certain environments such as fires, cya-
nide can continue to diffuse into a body following death 

(Karhunen et al. 1991). When victims are removed from 
such cyanide enriched environments, the rapid decom-
position of cyanide in biological matrices results in a 
systematic decrease in measurable cyanide (McAllister 
et al. 2008). Therefore, a complementary metabolic bio-
marker would be useful for opening a larger window for 
post-mortem analysis, and a more accurate assessment 
of the causal relationship between cyanide exposure and 
cause of death.

In the field of cyanide research, it has been well known 
that detoxification of cyanide by cystine produces ATCA 
in vivo (Wood & Cooley 1956). The formation mechanism 
of stable cyanide-protein adducts, such as the reaction of 
cyanide with the C-terminal Cys558 Cys567 disulfide bond 
of human serum albumin (Fasco et  al. 2011), is similar 
to that of ATCA. It has been suggested in an in vivo study 
that the reaction of an oxidized disulfide with a sulfur 
nucleophile from glutathione could be a plausible origin 
for ATCA (Zottola et al. 2009). It is likely that endogenous 
levels of ATCA in each organ reflect the availability of 
disulfide and the concentration of glutathione in those 
organs. Thus, endogenous ATCA levels may give an esti-
mate of each organ’s capacity for cyanide detoxification. 
For example, the results showing lower endogenous 
ATCA levels in the brain may be consistent with lower 
capacity for cyanide detoxification in this organ. This 
lower capacity might be partially due to the absence of 
rhodanese enzymes in the brain.

The pathway producing ATCA was estimated approxi-
mately 20% of cyanide metabolism (Baskin & Brewer 
1997). The quantity of ATCA produced has been found 
to be directly proportional to the amount of cyanide 
metabolized. ATCA is metabolically inert in experi-
mental rats and is stable in urine matrix for months in 
the freezer (Logue et al. 2005). Therefore, ATCA seems a 
promising candidate as a chemically stable biomarker of 
cyanide. Although ATCA production is not significant in 
plasma at sublethal doses of cyanide, its concentration in 
liver samples was significantly increased. Future studies 
will also focus on the determination of ATCA concentra-
tions in human plasma and liver samples, and stability of 

Figure 2.  TCA concentrations in organs after cyanide exposure (4 mg/kg body weight KCN administration (sc) to rats).
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ATCA in the post-mortem matrix as a part of future foren-
sic research on ATCA. These studies will be supported 
by the College of Criminal Justice of SHSU, and will be 
independent from the present NIH–supported diagnos-
tic biomarker studies. In an investigation of death in a 
fire scene, one of the important questions is whether the 
victim was alive at the beginning of fire. An interesting 
project for future study is to see whether post mortem 
HCN diffusion can produce ATCA in liver samples.
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