179 research outputs found

    Magnetoliposomes: opportunities and challenges

    Get PDF
    Combining liposomes with magnetic nanoparticles is an intriguing approach to create multifunctional vesicles for medical applications, which range from controlled drug delivery vehicles to diagnostic imaging enhancers. Over the past decade, significant effort has been invested in developing such hybrids - widely known as magnetoliposomes - and has led to numerous new concepts. This review provides an overview on of the current state of the art in this field. The concept of magnetic fluid hyperthermia and stimuli-responsive nanoparticles for drug delivery is briefly recapitulated. The materials needed for these hybrids are addressed as well. The three typically followed approaches to associate magnetic nanoparticles to the liposomes are described and discussed more in detail. The final chapters are dedicated to the analytical methods used to characterize these hybrids and to theoretical considerations relevant for bilayer-embedded nanoparticle

    Cellular uptake and cell-to-cell transfer of polyelectrolyte microcapsules within a triple co-culture system representing parts of the respiratory tract

    Get PDF
    Polyelectrolyte multilayer microcapsules around 3.4 micrometers in diameter were added to epithelial cells, monocyte-derived macrophages, and dendritic cells in vitro and their uptake kinetics were quantified. All three cell types were combined in a triple co-culture model, mimicking the human epithelial alveolar barrier. Hereby, macrophages were separated in a three-dimensional model from dendritic cells by a monolayer of epithelial cells. While passing of small nanoparticles has been demonstrated from macrophages to dendritic cells across the epithelial barrier in previous studies, for the micrometer-sized capsules, this process could not be observed in a significant amount. Thus, this barrier is a limiting factor for cell-to-cell transfer of micrometer-sized particles

    Plasmonic nanoparticles and their characterization in physiological fluids

    Get PDF
    Nanoparticles possess unique properties beyond that of classical materials, and while these properties can be used for designing a dedicated functionality, they may also pose a problem to living organisms, to human health and the environment. The specific primary routes by which nanoparticles may interact with the human body include inhalation, injection, ingestion and application to the skin. Independent of the entry route, the particles inevitably encounter a complex physiological fluid populated with e.g. proteins, vitamins, lipids and salts/ions. Different consequences of such an encounter may include formation of a surface-bound protein layer, particle dissolution or aggregation, which are expected to have a crucial impact on cellular interaction. Understanding cellular responses to nanoparticle interactions starts with understanding particle behavior in physiological fluids. Nanoparticles are now available in practically any size, shape and functionalization, to promote distinct optical, magnetic, and physico-chemical properties, making the prediction of their behavior, in physiological fluids, not a trivial task. Characterization has therefore become of paramount importance. In this review, we give an overview about the diversity of physiological fluids as well as present an inventory of the most relevant experimental techniques used to study plasmonic nanoparticles

    Taylor dispersion of nanoparticles

    Get PDF
    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced “industrial” particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori

    Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering

    Get PDF
    Light scattering is one of the few techniques available to adequately characterize suspended nanoparticles (NPs) in real time and in situ. However, when it comes to NPs in multicomponent and optically complex aqueous matrices – such as biological media and physiological fluids – light scattering suffers from lack of selectivity, as distinguishing the relevant optical signals from the irrelevant ones is very challenging. We meet this challenge by building on depolarized scattering: Unwanted signals from the matrix are completely suppressed. This approach yields information with an unprecedented signal-to-noise ratio in favour of the NPs and NP-biomolecule corona complexes, which in turn opens the frontier to scattering-based studies addressing the behaviour of NPs in complex physiological/biological fluids

    Speckle-visibility spectroscopy of depolarized dynamic light scattering

    Get PDF
    We show that the statistical analysis of photon counts in depolarized dynamic light scattering experiments allows for the accurate characterization of the rotational Brownian dynamics of particles. Unlike photon correlation spectroscopy, the technique is accurate even at low temporal resolution and enables discontinuous data acquisition, which offers several advantages. To demonstrate the usefulness of the method, we present a case study in which we analyze aqueous suspensions of tunicate cellulose nanocrystals and silica particles, and discuss aspects that are specific to particle sizing

    Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4+ T Cell Proliferation

    Get PDF
    To address how surface charge affects the fate of potential nanocarriers in the lung, gold nanoparticles (AuNPs) coated with polyvinyl alcohol containing either positively (NH2) or negatively (COOH) charged functional groups were intra-nasally instilled in mice, and their uptake by antigen presenting cell populations (APC) in broncho-alveolar lavage (BAL) fluid, trachea, and lung parenchyma, as well as trafficking to the lung draining lymph nodes (LDLNs) was assessed by flow cytometry. Furthermore, CD4+ T cell proliferation in LDLNs was investigated following instillation. All APC subpopulations preferentially captured positively-charged AuNPs compared to their negatively-charged counterparts. Uptake of AuNPs up-regulated expression of co-stimulatory molecules on all APC populations. Furthermore, positively-charged AuNPs induced enhanced OVA-specific CD4+ T cell stimulation in LDLNs compared to negatively-charged AuNPs, or polymer alone. Our findings demonstrate surface charge as a key parameter determining particle uptake by APC, and down-stream immune responses depend on the presence of particle core-bound polymer

    Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Get PDF
    Introduction: Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods: Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4⁺ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results: The frequency of PS particle–positive CD11c⁺/CD11b⁺ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4⁺ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion: These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4⁺ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.

    Assessing the impact of the physical properties of industrially produced carbon nanotubes on their interaction with human primary macrophages in vitro

    Get PDF
    Currently it is not fully understood how carbon nanotubes (CNTs) may affect human health. Despite this, CNTs are produced at a tonne mass scale yearly. Due to their large production and intended use within a variety of applications it is imperative that a clear understanding of the hazard potential of CNTs is gained. The aim of this study therefore was to assess the impact of five different industrially produced CNTs which varied in their physical properties on the viability of human monocyte derived macrophages (MDM), and subsequently, at sub-lethal concentrations (0.005-0.02 mg/mL), their ability to cause oxidative stress and a pro-inflammatory response in these important immune cells over a 24-h period. None of the CNTs caused significant cytotoxicity up to 0.02 mg/mL after 24 h. Only the long multi-walled CNTs (MWNCTs) caused a significant, dose-dependent (0.005-0.02 mg/mL) reactive oxygen species production, whilst bundled MWCNTs showed a significant tumor necrosis factor alpha release after 24 h exposure at 0.02 mg/mL. No effects were observed for either tangled MWCNTs or short MWCNTs. It can be concluded from the findings of the present study that the industrially produced CNTs studied can cause hazardous effects in vitro that may be associated with their physical propertie

    Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization

    Get PDF
    Polymersomes that encapsulate a hydrophilic polymer are prepared by conducting biocatalytic atom transfer radical polymerization (ATRP) in these hollow nanostructures. To this end, ATRPase horseradish peroxidase (HRP) is encapsulated into vesicles self-assembled from poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers. The vesicles are turned into nanoreactors by UV-induced permeabilization with a hydroxyalkyl phenone and used to polymerize poly(ethylene glycol) methyl ether acrylate (PEGA) by enzyme-catalyzed ATRP. As the membrane of the polymersomes is only permeable for the reagents of ATRP but not for macromolecules, the polymerization occurs inside of the vesicles and fills the polymersomes with poly(PEGA), as evidenced by 1H NMR. Dynamic and static light scattering show that the vesicles transform from hollow spheres to filled spheres during polymerization. Transmission electron microscopy (TEM) and cryo-TEM imaging reveal that the polymersomes are stable under the reaction conditions. The polymer-filled nanoreactors mimic the membrane and cytosol of cells and can be useful tools to study enzymatic behavior in crowded macromolecular environments
    corecore