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Abstract
Polyelectrolyte multilayer microcapsules around 3.4 micrometers in diameter were added to
epithelial cells, monocyte-derived macrophages, and dendritic cells in vitro and their uptake
kinetics were quantified. All three cell types were combined in a triple co-culture model,
mimicking the human epithelial alveolar barrier. Hereby, macrophages were separated in a three-
dimensional model from dendritic cells by a monolayer of epithelial cells. While passing of small
nanoparticles has been demonstrated from macrophages to dendritic cells across the epithelial
barrier in previous studies, for the micrometer-sized capsules, this process could not be observed
in a significant amount. Thus, this barrier is a limiting factor for cell-to-cell transfer of
micrometer-sized particles.

S Online supplementary data available from stacks.iop.org/STAM/16/034608/mmedia
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1. Introduction

The inhalation pathway is a promising entry portal for drug
delivery. Due to the characteristics of the lung, e.g., huge
internal surface of the lung parenchyma (i.e., alveoli and
airways) of about 150 m2 and millions of immune cells [1, 2],
the uptake of particulate materials is favored. Hereby, the

transfer from air to liquid, e.g., of particles, is controlled by
structural as well as by cellular barriers, i.e., the human epi-
thelial alveolar tissue barrier [3]. This barrier constitutes a
complex system involving the interplay of several different
types of cells. Still, essential features of the human epithelial
alveolar barrier can be simulated with cellular model systems.
A well-characterized three-dimensional (3D) model of this
barrier has been established, which is composed of epithelial
cells, human blood monocyte-derived macrophages (MDMs),
and dendritic cells (MDDCs) [3]. With triple cell co-cultures
(TCCs), it has been demonstrated, that nanoparticles, in par-
ticular polystyrene particles with diameters of 0.1–1 μm, can
be transferred across the lung barrier by being passed from
macrophages to dendritic cells [4]. While this process has
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been reported in several publications [4, 5], so far it has
remained unclear to which range of particle sizes this process
applies. Potentially such a process could be harnessed for
particle-based drug delivery applications. Particles in general
are endocytosed by macrophages. Thus, targeting the den-
dritic cells located underneath the epithelium could be
achieved by active passing particles from macrophages across
the epithelium to the dendritic cells.

We wanted to probe this concept for polyelectrolyte
microcapsules (PEMs) [6–9], which are a universal delivery
system. PEMs are fabricated by layer-by-layer assembly of
charged polyelectrolytes around sacrificial templates [9] and
can be readily used to encapsulate molecular cargo [10, 11].
Uptake of PEMs by cell lines and release of encapsulated
cargo has been demonstrated with two-dimensional (2D) cell
cultures [12–14]. While interaction of PEMs with cell lines is
relatively well studied [15, 16], also involving the investi-
gation of internalization pathways and cytotoxic effects
[17, 18], most of these studies are based on 2D in vitro
models. While there are several reports about in vivo appli-
cations, such as vaccination [19], the behavior of cells
regarding PEMs in complex cellular scenarios is poorly
understood. Thus, the objective of the present study was to
investigate the interaction of PEMs with TCCs and, in par-
ticular, to probe for their transfer across the lung barrier from
macrophages to dendritic cells located underneath the epi-
thelium. Such possible cell-to-cell transfer of PEMs could
potentially be exploited for inhalation-based applications
targeting dendritic cells, which are numerously distributed in
the respiratory tract and the key antigen-presenting cells,
orchestrating both innate and adaptive immune functions [1].
PEMs composed of biodegradable walls have been used to
release pro-drug molecules inside cells, which are activated
only after cellular internalization [20]. Due to the time delay
of activation after incorporation, it might be possible that
PEMs first are internalized by macrophages, and only after
having been passed to dendritic cells is their cargo activated,
which would allow for specific targeting. Whether such
concepts can be realized however will strongly depend on the
capability to transfer PEMs between macrophages and den-
dritic cells, which is the topic of the present study.

2. Experimental details

2.1. Synthesis of PEMs

2.1.1. Materials. Non-biodegradable PEMs made of poly
(sodium 4-styrenesulfonate) (PSS) and poly(allylamine
hydrochloride) (PAH), and biodegradable PEMs made of
dextran sulfate (DextS) and poly-L-arginine (PLArg) were
prepared as previously described [17, 20]. All chemicals used
for PEM synthesis were obtained from Sigma Aldrich (USA)
except fluorescein isothiocyanate (FITC)-dextran 500 kDa
and dequenching DQ-OVA (Life Technologies, USA).

2.1.2. Template core preparation. Either FITC-dextran or
DQ-OVA were embedded into CaCO3 template

microparticles by co-precipitation. In the case of FITC-
loaded particles, 10 mL of aqueous solution of CaCl2
(0.33 M) and 10 mL FITC-dextran 500 kDa (0.25 mg mL−1)
were mixed in a glass via l. During magnetic stirring
(1000 rpm), 3 mL of aqueous solution of Na2CO3 (0.33M)
was added quickly. After 30 s, the solution was transferred
into two 15 mL centrifuge tubes and after 2 min, the particle
growth was terminated by centrifugation. The particles were
washed three times with double distilled water. In the case
of QD-OVA, filled CaCO3 template microparticles were
synthesized using the same procedures, but with smaller
amounts of materials: 615 μL of CaCl2 (0.33M) solution,
770 μL DQ-OVA (50 μM), and 615 μL Na2CO3 (0.33 M), but
elsewise the same procedures [21, 22].

2.1.3. Biodegradable capsules. Layer-by-layer (LbL) assembly
was carried out by adsorbing alternating layers of negatively
charged DextS (Mw≈40 kDa, 2mg/mL in 0.5M NaCl) and
positively charged PLArg (Mw≈15–70 kDa, 1mg/mL in 0.5M
NaCl) onto the template cores. For each coating step, the
microparticles were suspended in 1–5mL of polyelectrolyte
solution, followed by three washing steps (centrifugation in
ddH2O). Finally, hollow FITC-dextran or DQ-OVA filled PEMs
were obtained by dissolution of the CaCO3 templates by Ca2+

ion complexion with ethylenediaminetetraacetic acid (EDTA,
0.2M, pH 7) [17, 20].

2.1.4. Non-biodegradable capsules. Synthesis was per-
formed analogously to that of the biodegradable PEMs with
PSS (Mw≈ 70 kDa) instead of DextS and with PAH
(Mw≈ 56 kDa) instead of PLArg [17, 20]. A summary of
the prepared PEMs with some of their physicochemical para-
meters is given in the Supporting Information (Supporting
Information, figure 1).

2.2. Cell culture techniques

2.2.1. Culture of cell lines. Human alveolar epithelial type II
cells (A549) from American Tissue Type Culture Collection
(ATTC #CCL-185) were cultured in Roswell Park Memorial
Institute Medium (RPMI 1640, Gibco, Luzern, Switzerland)
with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES, Gibco) supplemented with 10% fetal bovine
serum (FBS, heat inactivated, PAA Laboratories, Austria),
1% L-glutamine (L-glut, Gibco, Luzern, Switzerland), and
1% penicillin/streptomycin (Gibco, Luzern, Switzerland) and
maintained at 37 °C and 5% CO2. A549 epithelial cells were
sub-cultured twice per week using trypsin (0.05% trypsin-
EDTA, Gibco). Five days prior to TCC preparation, A549
cells were seeded at a density of 2 × 105 cells/mL in the upper
chamber of membrane inserts (BD Falcon, 0.3 cm2 surface
area, 3.0 μm pores, transparent PET-membrane), placed into
growth medium containing 24 well plates (Milian, Satigny,
Switzerland), and grown to confluence. The growth medium
was changed once before TCC preparation.

2.2.2. Isolation and monocyte differentiation. Monocytes
were isolated from buffy coats from healthy donors (blood
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donation service, Bern, Switzerland) as previously described
[4]. For differentiation into MDDCs, monocytes were
cultured in RPMI 1640 medium supplemented with 10%
FBS (heat inactivated, PAA Laboratories, Austria), 1% L-glut
(Gibco, Luzern, Switzerland), 1% penicillin/streptomycin
(Gibco, Luzern, Switzerland), 10 ng mL−1 granulocyte
macrophage colony-stimulating factor (GM-CSF, Miltenyi
Biotech, Bergisch Gladbach, Germany), and 10 ng mL−1

interleukin-4 (IL-4, Miltenyi Biotech, Bergisch Gladbach,
Germany). For differentiation into MDMs, no growth factors
were added. Differentiation was performed in six well plates
(106 cells/mL; 3 mL/well supplemented growth medium) for
6 days at 37 °C and 5% CO2. Differentiation and maturation
into MDDCs and MDMs applying this culture conditions
have been demonstrated in earlier studies [23, 24]. For the
experiments, the primary cells were harvested after
differentiation by off-scraping.

2.2.3. Cell preparation for live cell imaging. 1.2 × 105 MDMs/
mL, 0.8 × 105 MDDCs/mL, or 2 × 105 A549 cells/mL,
respectively, were grown inside 35 mm μ-dishes (Ibidi).
After 24 h, the cells were placed inside an environmental
module at 5% CO2 and 37 °C, DQ-OVA filled PEMs were
added (15 PEMs/cell), and live imaging was performed.

2.2.4. Cell preparation for live cell imaging of bi-
cultures. 1.2 × 105 MDMs/mL were grown inside 35 mm
μ-dishes (Ibidi) and loaded with PEMs (15 PEMs/cell) for 2 h.
Afterwards, 0.8 × 105 MDDCs/mL were added, which had
been stained with tetramethylrhodamine-labeled wheat germ
agglutinin (WGA, Life Technologies).

2.2.5. Cell preparation for live cell imaging of TCCs. A549
cells were fluorescently stained with CellTracker violet
BMQC dye at a dilution of 1:1000 for 1 h at 37 °C

followed by three washing steps with phosphate buffered
saline (PBS). Simultaneously staining of mature MDDCs was
performed inside the chambers of the six well plates that were
used for differentiation. After triple washing, off scraping and
counting, MDDCs were added to the membrane inserts
(8.9 × 103 cm−2), containing stained A549 cells on the top
side, to adhere at the bottom side by turning the insert upside
down for 1 h. During the attachment process, MDMs were
stained in the same way as MDDCs. Finally, 3.5 × 103

MDMsmL−1 were added on top of the A549 cells. PEMs
were added into the upper well prior to image acquisition by
confocal laser scanning microscopy (CLSM) and tracked over
24 h. In another approach, MDMs were pre-incubated with
PEMs for 24 h and then washed three times, scratched off,
and added to A549 cells and MDDCs already being attached
to the insert.

2.2.6. Cell preparation for flow cytometry (FCM) measure-
ments. MDMs were exposed to non-biodegradable PEMs (5
PEMs/cell) for 24 h. Afterwards, MDMs were washed three
times, scraped off, re-suspended in fresh medium, and spun
down for 3 min at 500 rcf. Simultaneously, MDDCs were
prepared for bi-culture. MDMs and MDDCs (1.25 × 106 cells
mL−1; 1:1 ratio), respectively, were co-exposed in a new
chamber of a six well plate another for 24 h for possible cell-
to-cell PEM transfer to take place. On day 7, the cells were
washed three times, scraped off, re-suspended in PBS, and
spun down for 3 min at 500 rcf. The supernatant was replaced
by fragment crystallizable blocking receptor reagent
(FCM-Block, Miltenyi Biotech #130059901) for 10 min in
order to reduce nonspecific binding. Then, cells were
re-suspended in 1 mL of FCM buffer (1% bovine serum
albumin (Sigma Aldrich, St. Louis, MO, USA) and 0.1%
NaN3 (Sigma Aldrich, St. Louis, MO, USA) in PBS, (Life
technologies, CA, USA) and stained with the following

Figure 1. (A) Kinetics of PEM uptake for the different types of cells used for the experiments. Cells were exposed to DextS/PLArg PEMs
filled with BODIPY-labeled DQ-OVA. By investigating the color change from red to green emission due to enzymatic digestion upon
uptake, the fraction of internalized PEMs Nint/Ntot over time was quantified, where Nint represents the number of internalized and Ntot

represents the total number of PEMs visible in a randomly chosen area. (B) Representative fluorescence micrographs are shown for two time
points (2 h and 6 h). Non-internalized PEMs appear red. Green fluorescence is associated with digested and released DQ-OVA. The scale bar
corresponds to 50 μm.
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antibodies: CD1c-Pacific Blue (Biolegend #331507) for
MDDCs and CD14-Brilliant Violet (Biolegend #301830)
for MDMs. Finally, cells were washed and FCM analysis was
performed.

2.3. Analysis techniques

2.3.1. Confocal fluorescence microscopy. Cells were kept in
an environmental module at 5% CO2 and 37 °C. Image
acquisition was carried out with a CLSM 710 Meta setup
(Zeiss, Germany/Switzerland) equipped with lasers for
excitation at 405 nm, 488 nm, or 543 nm. In the case of
observing the individual cells types separately for obtaining
the kinetics of PEM uptake, images were acquired at a
temporal resolution of 5 min using a Plan-Apochromat 20×/
0.8 M27 objective. Fluorescence of DQ-OVA was excited at
488 nm and 543 nm and the emission was collected between
500–540 nm (green channel) and 560–750 nm (red channel).
PEMs were counted based on the time-lapse image series
using CellProfiler [25], whereby internalized PEMs were
identified by their increased fluorescence in the green channel
upon contact with digestive enzymes after engulfment. In the
case of bi-cultures and TCCs, analysis was performed using a
25x objective with a numerical aperture of 1.4 and an
immersion oil lens. After TCC imaging, cellular and
morphological information was retrieved using Imaris
(Bitplane 7.4, Zürich, Switzerland). The spots module was
applied and set to 5 μm in order to track the PEMs throughout
the TCCs. Further, the cells morphology was restored in 3D
by surface rendering of smoothed data using the same
software.

2.3.2. Flow cytometry. FCM was carried out with a BD-LSR
Fortessa machine. The entire procedure was performed on ice
and 10 000 events were recorded. The obtained data were
analyzed with FlowJo (Tree Star). Representative gating
strategies are shown in the Supporting Information.

3. Results

3.1. Uptake of biodegradable capsules

In order to investigate whether PEMs or fragments of digested
PEMs can be passed from MDMs to MDDCs, DQ-OVA
labeled with boron-dipyrromethene (BODIPY) was encap-
sulated into biodegradable DextS/PLArg PEMs as described
previously [20]. The green fluorescence of the dye BODIPY
is almost completely self-quenched due to the close proximity
of the dye molecules inside non-fragmented ovalbumin [26].
At high dye concentrations, as occurring inside PEMs,
slightly red fluorescent excimers are formed. After enzymatic
degradation during uptake by cells, the green fluorescence
intensity of BODIPY is dramatically increased and inter-
nalized PEMs and potentially released and passed fragments
of DQ-OVA become visible [20].

For recording the uptake kinetics of PEMs in MDMs,
MDDCs, and A549 epithelial cells, all types of cells were

exposed to DQ-OVA filled PEMs and the ratio Nint/Ntot of
internalized to total PEMs was calculated over time. Hereby,
Ntot refers to the total number of capsules and Nint to the
number of internalized PEMs present in a randomly chosen
area recorded by CLSM (size of recorded areas ≈0.2 mm2).
The change in color from red to green fluorescence of
BODIPY-labeled DQ-OVA allowed for distinguishing
between internalized PEMs and PEMs outside cells
(figure 1(B)). MDMs showed the faster kinetics of inter-
nalization (green curve in figure 1(A)), followed by MDDCs
(red curve in figure 1(A)), and A549 cells (blue curve in
figure 1(A)). In contrast to MDMs, MDDCs are highly
mobile. Thus, they were able to take up much more PEMs
present over time, whereas MDMs could only reach and
internalize PEMs in close proximity and a certain fraction of
non-internalized PEMs always remained, depending on the
cell density.

Immediately after uptake, intracellular degradation of
encapsulated DQ-OVA was observable by a partial release of
BODIPY dye into the cytosol of both, MDMs and MDDCs
(figure 1). In A549 cells, only degradation inside the cavities
of the capsules but no release of encapsulated material was
visible. Within 24 h, fragmentation of the capsules could be
already detected in MDMs, as shown by CLSM (figure 2). In
bi-cultures of capsule-loaded MDMs and MDDCs, one pos-
sible transfer of PEM-released BODIPY-labeled DQ-OVA
fragments from one MDM to a MDDC could be witnessed
(figure 3) during excessive imaging.

When TCCs composed of epithelial cells (A549), MDMs
on top as well as MDDCs at the bottom of the membrane
inserts were exposed to biodegradable DextS/PLArg cap-
sules, PEMs were engulfed by MDMs in a time frame of
30 min and a partial release of DQ-OVA into the cytosol
occurred similarly than observed in monocultures (figure 1).
Some fluorescence signals of the degraded PEMs could be
detected in MDDCs on the bottom side of the membrane
(figure 4). Additionally, F-actin protrusions of MDDCs from
the lower chamber have been observed to penetrate the pores
of the insert membrane reaching the upper side of the
chamber. During live cell imaging, the visualization of
transfer events of released BODIPY-labeled DQ-OVA from
MDMs to MDDCs was not possible because of the rather
long time-intervals between acquisitions of the single 3D-
stacks. In bi-cultures of MDMs and MDDCs, only one pos-
sible transfer event was observed during excessive imaging
(figure 3, t= 130 min). Thus, a direct passing of digested PEM
fragments from MDMs to MDDCs in bi-cultures as well as in
TCCs was difficult to track and almost not observable by
CLSM within several time-lapse recordings of live cells.

3.2. Uptake of non-biodegradable capsules

Instead of imaging the cargo (BODIPY) of biodegradable
capsules as described previously, we probed the possible
detection of full PEM transfer events. For this purpose, cells
exposed to non-degradable PEMs based on PSS/PAH were
recorded in both CLSM and high content screening experi-
ments realized with FCM. Uptake of PEMs in TCCs was
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Figure 2. Biodegradable PEMs (A) and non-biodegradable PEMs (B) engulfed by MDMs at 1 h of exposure. Cells are shown in differential
interference contrast (DIC; grey) and PEMs are shown in green. The scale bar corresponds to 20 μm. More images are shown in figure SI-2.

Figure 3. Possible MDM-to-MDDC transfer of PEM-released BODIPY-labeled DQ-OVA fragments in MDM/MDDC bi-culture. MDMs
(appearing in green due to engulfed PEMs) were loaded with biodegradable DextS/PLArg PEMs filled with BODIPY-labeled DQ-OVA for
2 h. Subsequently, MDDCs marked with fluorescently labeled WGA (red) were added. PEMs appear as yellow spots, while digested DQ-
OVA exhibits bright green fluorescence. The transfer of released DQ-OVA is marked with white arrows. The scale bar corresponds to 50 μm.

Figure 4. Lateral view of a TCC model exposed to biodegradable DexS/PLArg PEMs containing BODIPY-labeled DQ-OVA after 4.5 h of
incubation (surface rendering). Capsules were added on top of the MDM cells and can be seen by the green fluorescence of DQ-OVA.
Fluorescence signals of BODIPY (green) on the bottom side of the insert are highlighted by white arrows. Cellular plasma membranes are
shown in red. The dark gap between the two red cell layers represents the membrane of the insert.
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analyzed with CLSM first. Hereby, the PEMs were added on
top of the membrane inserts, i.e., to the upper chamber in
which the MDMs were grown. As CLSM allows for lateral
resolution (in contrast to FCM), these measurements can help
us retrieve more details about the F-actin protrusions being
continuously formed by MDDCs grown in the lower chamber
toward the upper chamber of the inserts. In contrast to data
shown in figure 4, in this experiment, only MDDCs were
stained with CellTracker violet BMQC dye (figure 5).

Again, persistent ‘grabbing’ of MDDCs for the PEMs
was observed, but no PEMs were ‘pulled down’, i.e., no
transfer of PEMs from the upper to the lower chamber could
be observed. F-actin protrusions formed by MDDCs occurred
similarly as observed in the previous exposure experiments
with biodegradable PEMs. Also, in case MDMs were pre-
incubated with PEMs for 24 h before adding them to the bi-
culture system, the PEMs were not detected in MDDCs. Thus,
CLSM data did not indicate transfer of PEMs from MDMs to
MDDCs across the epithelial barrier formed by A549 cells.

As ‘grabbing’ of MDDCs towards PEM-loaded MDMs
was observed in the TCC model, possible PEM transfer
events were also investigated by FCM within bi-cultures of
MDMs and MDMs. MDMs were pre-loaded with non-bio-
degradable PSS/PAH PEMs filled with fluorescein iso-
thiocyanate (FITC) and added to cultures of MDDCs. After
24 h, cells were analyzed by FCM (figure 6). In 87% of all
MDMs, fluorescence signals of the PEMs could be found and
66% of all MDDCs were fluorescent after 24 h of co-cultur-
ing. Comparing the two primary cell types, the standard
deviation for MDDCs is much larger than the standard
deviation for MDMs (figure 6).

4. Discussion

To investigate uptake and possible cell-to-cell transfer of
released material from PEMs or whole PEM transfer events
between two different types of immune cells, i.e., from

MDMs to MDDCs, two different types of PEMs were used.
Biodegradable PEMs were prepared to trace released fluor-
escent molecules, whereas non-biodegradable PEMs seemed
reasonable to trace whole PEM cell-to-cell transfer events
acting as control in case transfer of released material from
biodegradable PEMs would have occurred in high frequency.

Figure 5. Side view of a TCC (3D surface rendering) exposed to non-biodegradable PSS/PAH PEMs filled with BODIPY-labeled DQ-OVA
(green) after 1 h. For clarification, only MDDCs were fluorescently stained (red). White arrows indicate F-actin protrusions of MDDCs
through the pores of the membrane insert (white dotted line). A549 and MDMs are not visible in this representation.

Figure 6. Investigation of PEM transfer events within 24 h from
initially PEM-loaded MDMs to MDDCs in bi-culture, as observed
by FCM. The y-axis represents the frequency Nint/Ntot (%) of MDMs
and MDDCs having internalized non-degradable PEMs. Hereby, Nint

corresponds to the number of cells with internalized PEMs and Ntot

to the total number of cells (the gating strategy can be found in the
Supporting Information, figure SI-3). MDMs were marked with
CD14 and MDDCs with CD1c antibodies. Experiments were
performed in triplicates and results are given as mean ± standard
deviation.
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Qualitative CLSM, as well as quantitative FCM analysis, was
applied. The application of live cell imaging for visualization
of TCCs is very challenging, since the thickness of the whole
tissue barrier is about 50–80 μm. In addition, MDDCs are
highly motile and thus, live imaging requires a high temporal
resolution to resolve cell-to-cell interactions. In this case,
image acquisition cannot be realized by conventional CLSM,
but would need spinning-disc techniques. However, with our
setup, we could show that the process of uptake and ingestion
of biodegradable PEMs by MDMs was very fast, i.e., within
30–45 min, as shown by others [27]. In experiments with
TCCs, signals of biodegradable PEMs were detected inside
MDDCs on the bottom side of the chamber after 4.5 h.
Capsule fragments were possibly transferred directly from
MDMs to MDDCs via tight junctions through the epithelium.
This process has been observed for polystyrene particles with
1 μm diameter in case of MDM/MDDC co-cultures by Blank
et al [4, 5]. However, since intracellular release of DQ-OVA
from PEMs in MDMs starts taking place immediately after
uptake (figure 1), it could also be possible that MDDCs came
into contact with exocytozed PEM fragments. These frag-
ments might have been secreted by either MDMs or A549
cells into the surrounding medium or could have been directly
transmitted from MDMs/A549 cells to MDDCs. Another
possibility could be that the released PEM fragments from the
MDMs have passed through the 3 μm-sized membrane pores
(either directly or via A549 cells) followed by subsequent
active uptake by MDDCs. Even internalized but non-frag-
mented capsules should be able to pass the pores of the
membrane once internalized, although they are larger in size:
They are rather elastic (mechanical stiffness <2 Nm−1) [27]
and, according to previous studies, can be deformed and
compressed by cells easily [15, 27, 28]. As the capsules are
slightly larger than the pore size, passive diffusion from the
top to the bottom side of the insert can almost be excluded.
Hence, capsules being present on the MDDC side must have
actively been transferred by cells.

In order to confirm the exact route of the released cap-
sules/capsule fragments from MDMs toward the bottom side
of the membrane insert in the two-chamber system, it would
be necessary to completed more observations with micro-
scopy techniques that allow a higher temporal resolution. The
non-biodegradable PEMs were not transmitted to MDDCs
residing at the bottom side of the insert under any conditions.
We assume that this is a matter of size, since it was shown
that 1 μm polystyrene beads were detected inside MDDCs on
the bottom side of the insert in TCCs after initial exposure of
MDMs with the particles [4, 24, 29]. For both architectures of
PEMs, cellular F-actin protrusion from MDDCs was detected
throughout the exposure. These protrusions were well visua-
lized when applying image restoration. It is known that
F-actin filament growth occurs within microseconds [29] and
is a prerequisite for cells to move, grow, scan, and sense their
surrounding environment [30, 31]. Since F-actin protrusions
were observed to occur throughout the measurement, the cells
seemed to try to reach out for capsules persistently without
any success.

Whereas live cell imaging allows for the analysis of
entire TCCs, in additionally performed FCM measurements,
only bi-cultures were examined. Although the two approaches
of live cell imaging and FCM differed in their sample pre-
paration and detection, the findings coincided in terms of no
observed capsule transmission from MDMs to MDDCs. In a
supplementary performed FCM-based control experiment,
capsule transmission from MDMs to epithelial A549 cells,
instead of MDDCs, was probed. Similar results were
observed, i.e., capsules could be detected inside A549 cells
with the same frequency as inside MDDCs; hence, FCM
experiments could neither verify PEM transfer from MDMs
to MDDCs. This indicates that in these bi-cultures, PEM
uptake most probably derived from the free PEMs in the
surrounding medium. Although validation is required, non-
phagocytic A549 cells seemed to be a good control, since
their function as barrier forming cells is far different from the
function of immune cells, which perform phagocytosis and
crosstalk with other cells. Thus, based on the FCM data, we
could not confirm any cell-to-cell transfer of PEMs between
MDMs and MDDCs.
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