24 research outputs found

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    A NEW PROGRAM IN IASI CITY- PUBLIC ACCESS DEFIBRILLATION

    No full text
    Public-access automated external defibrillators (AEDs) can seem near-miraculous in their ability to pull sudden cardiac arrest victims back from death, in case of cardiac arrest with Ventricular Fibrillation/ Ventricular Tachycardia. Their use, both medical and public, according to the European Resuscitation Council 2010 Guidelines, highly varies among the European Union and is limited in Romania, especially for public access. In this context, the medical emergency services from Iasi realized a study in order to identify the areas of the city with the highest frequency of cardiac arrest and to propose to local authorities purchasing a number of AEDs and locate them in public places. The project was accompanied by a training program for users without the basic medical training. The project of investing in this type of devices (as European trend) was successful and the model can be follow by others Romanian local and national authorities, for many public sites

    Prototype with the basic architecture for the CBM-TOF inner wall tested in close to real conditions

    No full text
    Two dimensional position sensitive timing MGMSRPC prototypes were developed for the low polar angles of the CBM - TOF wall. Four MGMSRPC counters were arranged in a staggered geometrical configuration along the z direction, with overlap along and across the strips, in order to define a basic architecture for the inner zone of the CBM-TOF wall. This configuration was tested with mixed electron-pion beam at CERN-PS and with reaction products resulted from the heavy ion induced reactions at SIS18 - GSI Darmstadt and SPS - CERN. The performance of the basic architecture in conditions close to the ones expected for their operation in the inner zone o the CBM - TOF wall at SIS100/FAIR will be presented
    corecore