407 research outputs found

    Some aspects of the human body's hydraulics

    Get PDF
    This paper presents some aspects related to the human body's hydraulics in the desire to make readers aware of how to maintain all the blood vessels of the human body in order to maintain the entire healthy, functional, young, vigorous circulatory system for a while the longest possible. The problem is complex because it has to be viewed from all points of view and not only as an isolated system in the body, having aspects of feedback on the whole physiopathology belonging to the human body. The highly circulating system needs permanent maintenance. Self-maintenance is done through various physiological mechanisms tightly linked to each other, including the lymphatic, digestive, renal, lung, nervous, glandular system… It is not possible to completely separate the physiology of a system from the other adjacent systems because they all work synergistically, being permanently controlled by the central and peripheral nervous system

    Biomechanically tunable nano-silica/p-hema structural hydrogels for bone scaffolding

    Get PDF
    Innovative tissue engineering biomimetic hydrogels based on hydrophilic polymers have been investigated for their physical and mechanical properties. 5% to 25% by volume loading PHEMA-nanosilica glassy hybrid samples were equilibrated at 37◦C in aqueous physiological isotonic and hypotonic saline solutions (0.15 and 0.05 M NaCl) simulating two limiting possible compositions of physiological extracellular fluids. The glassy and hydrated hybrid materials were characterized by both dynamo-mechanical properties and equilibrium absorptions in the two physiological-like aqueous solutions. The mechanical and morphological modifications occurring in the samples have been described. The 5% volume nanosilica loading hybrid nanocomposite composition showed mechanical characteristics in the dry and hydrated states that were comparable to those of cortical bone and articular cartilage, respectively, and then chosen for further sorption kinetics characterization. Sorption and swelling kinetics were monitored up to equilibrium. Changes in water activities and osmotic pressures in the water-hybrid systems equilibrated at the two limiting solute molarities of the physiological solutions have been related to the observed anomalous sorption modes using the Flory-Huggins interaction parameter approach. The bulk modulus of the dry and glassy PHEMA-5% nanosilica hybrid at 37◦C has been observed to be comparable with the values of the osmotic pressures generated from the sorption of isotonic and hypotonic solutions. The anomalous sorption modes and swelling rates are coherent with the difference between osmotic swelling pressures and hybrid glassy nano-composite bulk modulus: the lower the differences the higher the swelling rate and equilibrium solution uptakes. Bone tissue engineering benefits of the use of tuneable biomimetic scaffold biomaterials that can be “designed” to act as biocompatible and biomechanically active hybrid interfaces are discussed

    Dynamically enhancing qubit-oscillator interactions with anti-squeezing

    Full text link
    The interaction strength of an oscillator to a qubit grows with the oscillator's vacuum field fluctuations. The well known degenerate parametric oscillator has revived interest in the regime of strongly detuned squeezing, where its eigenstates are squeezed Fock states. Owing to these amplified field fluctuations, it was recently proposed that squeezing this oscillator would dynamically boost its coupling to a qubit. In a superconducting circuit experiment, we observe a two-fold increase in the dispersive interaction between a qubit and an oscillator at 5.5 dB of squeezing, demonstrating in-situ dynamical control of qubit-oscillator interactions. This work initiates the experimental coupling of oscillators of squeezed photons to qubits, and cautiously motivates their dissemination in experimental platforms seeking enhanced interactions.Comment: 21 pages, 15 figure

    The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    No full text
    International audienceCarbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were unusually high, compared with other tundra sites, with NEE=?92 g C m?2 yr?1, which is composed of an Reco=+141 g C m?2 yr?1 and GPP=?232 g C m?2 yr?1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (?14°C), reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg ?2), whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m?2 yr?1, so that the greenhouse gas balance was ?64 g C-CO2e m?2 yr?1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition

    Effects of Goji berries supplementation on the productive performance of rabbit

    Get PDF
    Abstract Recognized by the traditional medicine and recent scientific research studies, Lycium barbarum berries (Goji berries) have beneficial effects on human and animal health. The aim of our study was to evaluate the effects of Goji berries on the productive performance of rabbits. One month before insemination, 60 New Zealand White does were randomly assigned to one of the following 3 dietary treatments: commercial standard diet (C); C supplemented with 1% Goji berries (LG); and C supplemented with 3% Goji berries (HG). After weaning up to 91 days of age, 15 randomly selected rabbits/group were fed the same diet as the mothers (C, LG, and HG). Non-pregnant and lactating does of C group showed the highest feed intake (P < 0.01), although no significant differences in body weight (BW) were observed between groups. Nutritional treatment did not affect the offspring's feed intake. However, the rabbits fed with Goji supplementation showed not only higher mean BW both during growth (P < 0.001) and at slaughter (P < 0.01), but also better feed conversion ratio (FCR; P < 0.01) than the control group. Rabbits of LG group showed the best performances in the pre-weaning period which was probably related to the highest milk production of the LG does (P < 0.001). Indeed, LG group showed lower pre-weaning mortality (P < 0.05), higher litter size (P < 0.05), and higher litter weight (P < 0.05) at day 18 as well as higher litter size at weaning (P = 0.05) compared to C group. In conclusion, the present study demonstrates that a low percentage of dietary supplementation with Goji berry improves both reproductive and productive traits of rabbits. Although further studies are needed, our study paves the way for the use of Goji berries in the rabbit nutrition

    C-Terminus Glycans with Critical Functional Role in the Maturation of Secretory Glycoproteins

    Get PDF
    The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs - one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl
    corecore