41 research outputs found

    E-FABP induces differentiation in normal human keratinocytes and modulates the differentiation process in psoriatic keratinocytes in vitro.

    Get PDF
    Epidermal fatty acid-binding protein (E-FABP) is a lipid carrier, originally discovered in human epidermis. We show that E-FABP is almost exclusively expressed in postmitotic (PM) keratinocytes, corresponding to its localization in the highest suprabasal layers, while it is barely expressed in keratinocyte stem cells (KSC) and transit amplifying (TA) keratinocytes. Transfection of normal human keratinocytes with recombinant (r) E-FABP induces overexpression of K10 and involucrin. On the other hand, E-FABP inhibition by siRNA downregulates K10 and involucrin expression in normal keratinocytes through NF-ÎşB and JNK signalling pathways. E-FABP is highly expressed in psoriatic epidermis, and it is mainly localized in stratum spinosum. Psoriatic PM keratinocytes overexpress E-FABP as compared to the same population in normal epidermis. E-FABP inhibition in psoriatic keratinocytes markedly reduces differentiation, while it upregulates psoriatic markers such as survivin and K16. However, under high-calcium conditions, E-FABP silencing downregulates K10 and involucrin, while survivin and K16 expression is completely abolished. These data strongly indicate that E-FABP plays an important role in keratinocyte differentiation. Moreover, E-FABP modulates differentiation in psoriatic keratinocytes

    Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    Get PDF
    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhighand ALDHlowderived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma

    Expression of nuclear survivin in normal skin and squamous cell carcinoma: a possible role in tumor invasion

    Get PDF
    Background: Survivin is detected in few adult normal cells and it is highly expressed in cancer. Nuclear survivin facilitates cell cycle entry, while the mitochondrial pool protects cells from apoptosis. Survivin is overexpressed in keratinocyte stem cells (KSC) and protects them from apoptosis. Methods: As KSC are at the origin of squamous cell carcinoma (SCC), we evaluated survivin expression in normal and cancerous skin in vivo by immunohistochemistry and western blotting. HaCaT cells overexpressing survivin and wound-healing assay are used. Anova and Student-T tests are used for statistical analysis. Results: Survivin is localized both in the cytoplasm and in the nucleus of normal adult and young keratinocytes. Nuclear survivin is detected in one every 10/11 basal keratinocytes. When present in suprabasal cells, nuclear survivin is co-expressed with K10, but not with K15 or p75-neurotrophin-receptor (p75NTR), a transit amplifying cell marker. Nuclear, but not cytoplasmic survivin expression dramatically increases in actinic keratosis and in SCC in situ, as compared to normal epidermis, and it is highest in poorly differentiated SCC. In SCC tumors, nuclear survivin-positive cells are mainly K10/p75NTR-negative and K15-positive. In poorly differentiated tumors, survivin mostly localizes in the deep infiltrating areas. When overexpressed in keratinocytes, survivin increases cell migration. Conclusion: High survivin expression and the subcellular localization of survivin correlate with keratinocyte differentiation and are associated with undifferentiated and more invasive SCC phenotype

    Label-free toxicology screening of primary human mesenchymal cells and iPS-derived neurons

    Get PDF
    The high-throughput, label-free Corning Epic assay has applications in drug discovery, pharmacogenomics, cell receptor signaling, cell migration, and viral titration. The utility of Epic technology for biocompatibility testing has not been well established. In manufacturing of medical devices, in vitro and in vivo biocompatibility assessments are mandatory, according to ISO 10993. The new medical device regulation MDR 745/2017 specifies that ex vivo assays that can closely recapitulate in vivo scenarios are needed to better evaluate biomedical devices. We propose herein that Epic technology\u2014which enables detection of variations in cell mass distribution\u2014is suitable for biocompatibility screening of compounds. In this study, we challenged primary human osteoblasts, endothelial cells, and neurons derived from induced pluripotent stem cells with specific concentrations of methyl methacrylate (MMA). Polymeric MMA has long been applied in cranioplasty, where it makes contact with multiple cell types. Application of Epic technology yielded real-time cytotoxicity profiles for all considered cell types. The results were compared with those from microscopic observation of the same culture plate used in the Epic analyses. The Epic assay should be further examined for its utility for cell biology, genomics, and proteomics companion assays. Our results suggest that Epic technology can be applied to biocompatibility evaluation of human cells in medical device development

    Organ culture and Reflectance Confocal Microscopy as new integrated tools for barrier rescue studies in inflammatory skin diseases

    Get PDF
    Here we present a new integrated approach to understand skin barrier recovery after physical (tape stripping, TS) or chemical (SDS) injury by combining human skin organ culture and Reflectance Confocal Microscopy (RCM). TS in vitro produced a complete removal of stratum corneum and lipids, a drastic decrease of structural and adhesion proteins, and an increase in cell proliferation. Epidermal recovery with either proliferation or differentiation rescue was observed after 18 hours, with no apoptotic cell detection. On the other hand, when skin organ cultures were exposed to 2% SDS, cellular junctions were disrupted and the expression of late differentiation markers decreased. Junctions repair was detected 24 hours after treatment, with the restoration of epidermal integrity. Both models (TP or SDS) showed the induction of immune-inflammatory markers, such as psoriasin, keratin 16, and the increase in Langerhans cell number. RCM confirmed all the morphological and structural features presented by the organ cultures, thus making this technique fast and easily applicable in the context of dermatological research. These results indicate that combination of skin organ models and RCM can be successfully used for the study of barrier perturbation in skin diseases, for toxicology tests, and for evaluating novel therapies

    mTOR Pathway Expression as Potential Predictive Biomarker in Patients with Advanced Neuroendocrine Tumors Treated with Everolimus

    Get PDF
    Background: Everolimus (Eve), which is a mammalian target of Rapamicin (mTOR) inhibitor, is part of the therapeutic armamentarium of neuroendocrine tumors (NETs). Currently, there are no validated biomarkers predicting Eve efficacy in NETs. In this study, we explore whether the expression of phosphorilated (p)-mTOR and p70S6-kinase (S6K), a downstream effector of mTOR, correlates with the outcome of patients with NET that were treated with Eve. Methods: Tissue specimens that were derived from NETs treated with Eve at our Institution were examined for the expression levels of p-mTOR and p-S6K by immunohistochemistry. Response rate (RR), progression-free survival (PFS), and overall survival (OS) were analyzed in two groups: p-mTOR/p-S6K positive (group 1) and p-mTOR/p-S6K negative (group 2). Univariate and multivariate Cox regression analysis were performed. Results: Twenty-four patients with advanced NETs that were treated with Eve were included in the analysis. Eight out 24 (33.3%) patients were both p-mTOR and p-S6K positive. A better median PFS and OS in group 1 (18.2 and 39.9 months) as compared to group 2 (13 and 32.4 months) was depicted, with a toxicity profile that was comparable with data literature. Conclusions: Our study suggests that the activation of mTOR pathway can predict better outcomes in patients with NET treated with Eve. However, these results warrant further confirmation in a prospective setting

    Role of neurotrophins on dermal fibroblast survival and differentiation

    Get PDF
    Neurotrophins (NTs) belong to a family of growth factors that play a critical role in the control of skin homeostasis. NTs act through the low-affinity receptor p75NTR and the high-affinity receptors TrkA, TrkB and TrkC. Here we show that dermal fibroblasts (DF) and myofibroblasts (DM) synthesize and secrete all NTs and express NT receptors. NTs induce differentiation of DF into DM, as shown by the expression of \u3b1-SMA protein. The Trk inhibitor K252a, TrkA/Fc, TrkB/Fc or TrkC/Fc chimera prevents DF and DM proliferation. In addition, p75NTR siRNA inhibits DF proliferation, indicating that both NT receptors mediate DF proliferation induced by endogenous NTs. Autocrine NTs also induce DF migration through p75NTR and Trk, as either silencing of p75NTR or Trk/Fc chimeras prevent this effect, in absence of exogenous NTs. Finally, NGF or BDNF statistically increase the tensile strength in a dose dependent manner, as measured in a collagen gel through the GlaSbox device. Taken together, these results indicate that NTs exert a critical role on fibroblast and could be involved in tissue remodelling and wound healin

    Isolation and Characterization of Squamous Cell Carcinoma-Derived Stem-like Cells: Role in Tumor Formation

    Get PDF
    In human epidermis, keratinocyte stem cells (KSC) are characterized by high levels of β1-integrin, resulting in the rapid adhesion to type IV collagen. Since epithelial tumors originate from KSC, we evaluated the features of rapidly adhering (RAD) keratinocytes derived from primary human squamous cell carcinoma of the skin (cSCC). RAD cells expressed higher levels of survivin, a KSC marker, as compared to non-rapidly adhering (NRAD) cells. Moreover, RAD cells proliferated to a greater extent and were more efficient in forming colonies than NRAD cells. RAD cells also migrated significantly better than NRAD cells. When seeded in a silicone chamber and grafted onto the back skin of NOD SCID mice, RAD cells formed tumors 2–4 fold bigger than those derived from NRAD cells. In tumors derived from RAD cells, the mitotic index was significantly higher than in those derived from NRAD cells, while Ki-67 and survivin expression were more pronounced in RAD tumors. This study suggests that SCC RAD stem cells play a critical role in the formation and development of epithelial tumors

    CD271 Mediates Stem Cells to Early Progeny Transition in Human Epidermis

    Get PDF
    CD271 is the low-affinity neurotrophin (p75NTR) receptor that belongs to the tumor necrosis factor receptor superfamily. Because in human epidermis, CD271 is predominantly expressed in transit-amplifying (TA) cells, we evaluated the role of this receptor in keratinocyte differentiation and in the transition from keratinocyte stem cells (KSCs) to progeny. Calcium induced an upregulation of CD271 in subconfluent keratinocytes, which was prevented by CD271 small interfering RNA. Furthermore, CD271 overexpression provoked the switch of KSCs to TA cells, whereas silencing CD271 induced TA cells to revert to a KSC phenotype, as shown by the expression of \u3b21-integrin and by the increased clonogenic ability. CD271(+) keratinocytes sorted from freshly isolated TA cells expressed more survivin and keratin 15 (K15) compared with CD271(-) cells and displayed a higher proliferative capacity. Early differentiation markers and K15 were more expressed in the skin equivalent generated from CD271(+) TA than from those derived from CD271(-) TA cells. By contrast, late differentiation markers were more expressed in skin equivalents from CD271(-) than in reconstructs from CD271(+) TA cells. Finally, skin equivalents originated from CD271(-) TA cells displayed a psoriatic phenotype. These results indicate that CD271 is critical for keratinocyte differentiation and regulates the transition from KSCs to TA cells

    TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma

    Get PDF
    : This study assesses the expression of all TNF-related apoptosis-inducing ligand (TRAIL) receptors in pancreatic ductal adenocarcinoma (PDAC) tumor tissue. We aimed to include TRAIL receptor expression as an inclusion parameter in a future clinical study using a TRAIL-based therapy approach for PDAC patients. Considering the emerging influence of PDAC desmoplastic stroma on the efficacy of anti-PDAC therapies, this analysis was extended to tumor stromal cells. Additionally, we performed PDAC stroma characterization. Our retrospective cohort study (N=50) included patients with histologically confirmed PDAC who underwent surgery. The expression of TRAIL receptors (DR4, DR5, DcR1, DcR2, and OPG) in tumor and stromal cells was evaluated by immunohistochemistry (IHC). The amount of tumor stroma was assessed by anti-vimentin IHC and Mallory's trichrome staining. The prognostic impact was determined by the univariate Cox proportional hazards regression model. An extensive expression of functional receptors DR4 and DR5 and a variable expression of decoy receptors were detected in PDAC tumor and stromal cells. Functional receptors were detected also in metastatic tumor and stromal cells. A poor prognosis was associated with low or absent expression of decoy receptors in tumor cells of primary PDAC. After assessing that almost 80% of tumor mass was composed of stroma, we correlated a cellular-dense stroma in primary PDAC with reduced relapse-free survival. We demonstrated that TRAIL functional receptors are widely expressed in PDAC, representing a promising target for TRAIL-based therapies. Further, we demonstrated that a low expression of DcR1 and the absence of OPG in tumor cells, as well as a cellular-dense tumor stroma, could negatively impact the prognosis of PDAC patients
    corecore