643 research outputs found

    Accelerator Memory Reuse in the Dark Silicon Era

    Get PDF
    Accelerators integrated on-die with General-Purpose CPUs (GP-CPUs) can yield significant performance and power improvements. Their extensive use, however, is ultimately limited by their area overhead; due to their high degree of specialization, the opportunity cost of investing die real estate on accelerators can become prohibitive, especially for general-purpose architectures. In this paper we present a novel technique aimed at mitigating this opportunity cost by allowing GP-CPU cores to reuse accelerator memory as a non-uniform cache architecture (NUCA) substrate. On a system with a last level-2 cache of 128kB, our technique achieves on average a 25% performance improvement when reusing four 512 kB accelerator memory blocks to form a level-3 cache. Making these blocks reusable as NUCA slices incurs on average in a 1.89% area overhead with respect to equally-sized ad hoc cache slice

    Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques.

    Get PDF
    Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques

    Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques

    Get PDF
    Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques

    Clinical applications of ultra-high field magnetic resonance imaging in multiple sclerosis

    Get PDF
    Introduction: Magnetic resonance imaging (MRI) is of paramount importance for the early diagnosis of multiple sclerosis (MS) and MRI findings are part of the MS diagnostic criteria. There is a growing interest in the use of ultra-high-field strength 127 Tesla- (7T) MRI to investigate, in vivo, the pathological substrate of the disease. Areas covered: An overview of 7T MRI applications in MS focusing on increased sensitivity for lesion detection, specificity of the central vein sign and better understanding of MS pathophysiology. Implications for disease diagnosis, monitoring and treatment planning are discussed. Expert commentary: 7T MRI provides increased signal-to-noise and contrast-to-noise-ratio that allow higher spatial resolution and better detection of anatomical and pathological features. The high spatial resolution reachable at 7T has been a game changer for neuroimaging applications not only in MS but also in epilepsy, brain tumors, dementia, and neuro-psychiatric disorders. Furthermore, the first 7T device has recently been cleared for clinical use by the food and drug administration

    Adaptive and off-line techniques for non-linear multiscale analysis

    Get PDF
    This paper presents two procedures, based on the numerical multiscale theory, developed to predict the mechanical non-linear response of composite materials under monotonically increasing loads. Such procedures are designed with the objective of reducing the computational cost required in these types of analysis. Starting from virtual tests of the microscale, the solution of the macroscale structure via Classical First-Order Multiscale Method will be replaced by an interpolation of a discrete number of homogenized surfaces previously calculated. These surfaces describe the stress evolution of the microscale at fixed levels of an equivalent damage parameter (). The information required for these surfaces to conduct the analysis is stored in a Data Base using a json format. Of the two methods developed, the first one uses the pre-computed homogenized surface just to obtain the material non-linear threshold, and generates a Representative Volume Element (RVE) once the material point goes into the nonlinear range; the second method is completely off-line and is capable of describing the material linear and non-linear behavior just by using the discrete homogenized surfaces stored in the Data Base. After describing the two procedures developed, this manuscript provides two examples to validate the capabilities of the proposed method

    Nonlinear modelling of the seismic response of masonry structures: Calibration strategies

    Get PDF
    In this paper, a simple and practitioners-friendly calibration strategy to consistently link target panel-scale mechanical properties (that can be found in national standards) to model material-scale mechanical properties is presented. Simple masonry panel geometries, with various boundary conditions, are utilized to test numerical models and calibrate their mechanical properties. The calibration is successfully conducted through five different numerical models (most of them available in commercial software packages) suitable for nonlinear modelling of masonry structures, using nonlinear static analyses. Firstly, the panel stiffness calibration is performed, focusing the attention to the shear stiffness. Secondly, the panel strength calibration is conducted for several axial load ratios by attempts using as reference the target panel strength deduced by well-known analytical strength criteria. The results in terms of panel strength for the five different models show that this calibration strategy appears effective in obtaining model properties coherent with Italian National Standard and Eurocode. Open issues remain for the calibration of the post-peak response of masonry panels, which still appears highly conventional in the standards

    Evaluation of the additional shear demand due to frame-infill interaction: a new capacity model

    Get PDF
    During earthquakes, masonry infills exert a significant stiffening and strengthening action which can be favourable or adverse to face the earthquake-induced demand. Infills transfer the force increment to the RC frame members as an additional shear force. Because of this, local shear failures at the end of the columns, or at the end of the beam-column joints can occur. This is particularly true in the case of non-seismically conforming frame structures, as also shown by post-earthquake damage revealed by recent and past earthquakes. Assessment of this additional shear demand is not possible using the common equivalent strut model for the infills. On the other hand, 2D inelastic models are not computationally effective to be used for seismic analysis of large and complex buildings. Because of this, the actual shear demand on columns is underestimated in most cases. In order to maintain the simplicity of the equivalent strut approach without losing the information about the actual shear force on the columns, the current paper provides a detailed study about the infill-frame shear transfer mechanism. Refined 2D inelastic models of real experimental tests on infilled frames have been realized in OpenSees with the aid of the STKO pre and post processor platform. Shear demand on the columns is extracted as on output of the simulations and compared to the axial force resulting from the same simulations made with the equivalent strut models. An analytical relationship allowing estimate the additional shear demand as a function of the current axial force on the equivalent struts and the geometrical and mechanical properties of the infilled frames is finally proposed. The formula can be easily used to perform shear safety checks of columns adjacent to the infills in seismic analyses
    • 

    corecore