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We present an effective numerical technique for computing the electrical image coefficients
for rounded rectangular pipes with perfectly conducting walls. The method of moments is
used to solve the involved boundary-value problem in integral form, by means of(a rapidly
converging representation of) the rectangular-domain Green's function, together with a
set of piecewise parabolic subdomain basis functions, yielding high speed and accuracy,
with minimum storage budget (no prior meshing required). As a distinctive feature of the
proposed method no numerical differentiation is required, resulting into far better accu
racy as compared, e.g., to finite-element and finite-difference methods. Application to
some simplified cross section geometries relevant to LHC (square with rounded corners,
stadium and cut-circle) are presented. As a check of accuracy of the proposed approach, a
comparison with available exact (analytical) results for the circular pipe (hardest possible
benchmark), shows an excellent agreement.
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1 INTRODUCTION

The computation of Laslett coefficients is an important issue in the
design of particle accelerators. 1 These coefficients represent the effect of
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the image fields on (transverse) betatron oscillations, and are thus
relevant to beam stability. In this connection, efficient and reliable tools
for computing the Laslett coefficients could considerably speed up the
pipe design procedure.

In this paper we present a numerical technique for computing the
electrical image coefficients for some geometries of interest in connec
tion with LHC.2 These geometries (rounded-corners square, stadium
and cut-circle) are obtained from the rectangular one by perturbing
(rounding) part of the boundary.

The proposed approach uses the method of moments (hence
forth MoM),3 to solve the pertinent Poisson boundary-value problem.
At variance of other authors4 we use (a rapidly converging repre
sentation of) the rectangular-domain Green's function instead of
the usual free-space one to solve the involved integral equation. Thanks
to this choice, the (unknown) surface charges in the MoM integral
equation exist only on the perturbed part of the boundary (rounded
corners), instead of the whole (rectangular) boundary, with a sub
stantial reduction in the number of unknowns. Using piecewise
parabolic subdomain basis and test functions further reduces the
computational burden.

As a result, the typical size of the (resulting, discrete) problem is
20 x 20, for three-figure accuracy in the Laslett coefficients. To test the
accuracy of the proposed method we applied it to the circular geometry,
for which exact analytical results are available. This latter provides the
hardest possible test case (largest departure from the rectangular geo
metry). Our numerical results are found to be in excellent agreement
with the exact ones.

The paper is organized as follows. In Section 2 we introduce the MoM
integral equation formulation. In Section 3 we compute the image fields
and Laslett coefficients. In Section 4 we discuss a number of aspects
related to numerical implementation. In Section 5 we outline the main
computational features of the proposed method. In Section 6 we check
its accuracy by comparison with known analytical solutions, and
present numerical results related to some geometries (rounded-corners
square, stadium and cut-circle) relevant to LHC. Concluding remarks
follow under Section 7. A number of technical details and calculations
are collected in Appendices A and B.
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2 FORMULATION

39

A perfectly conducting rectangular boundary with rounded corners is
considered, as shown in Figure 1.

The fields produced by a line charge distribution with (linear) charge
density A going through the (transverse) beam center of charge, whose
position will be henceforth denoted as fb, are determined from an
electric potential, satisfying Poisson equation under Dirichlet boundary
conditions, 5 viz.:

f E So,
f E 8So,

(1)

\7; being the (transverse) Laplacian. The potential admits an integral
representation, in terms of a suitable Green's function g:

(2)

where Ps represents the (unknown) surface charge density on 8So and I
is the arc-length on 8So. Usual numerical strategies (e.g. MoM) require

y

b

r = (x,y)

a x
FIGURE 1 Geometry under analysis.
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discretization of the surface charge density and/or its expansion on a
suitable functional basis on 8So, whose coefficients are determined by
solving a linear matrix problem, obtained by enforcing the boundary
conditions. 3 In the usual approach g is the free-space Green's fun
ction gO:5

(3)

and the unknown surface charge density Ps is accordingly defined on
the whole 8So.

A considerable reduction in the problem size is achieved by observing
that the geometries of interest (rounded-corners square, stadium and
cut-circle) differ from the rectangle only by rounded corners or sides.
Then, it might be more advantageous to use the rectangular domain
Green's function gR of the Poisson equation (henceforth RDGF) to
recast (2) in the following form:

<1>(r, rb) == L1gR(r, Ik)Pak (lk)dlk + AgR(r, rb), (4)
k O"k

where, obviously, the potential given by (4) satisfies already by
assumption the boundary conditions on the straight portion of the
rectangular contour, and the unknown surface-charge density exists
only on the rounded portion of 8So, composed by arcs which will be
denoted as (J"k (see Figure 1). In (4), lk denotes the arc-length on (J"k.

Rapidly converging series expansions of the RDGF, which explicitly
contain the (logarithmic) singular term are known,6,7 and are reported
in Appendix A.

This formulation allows a substantial memory and CPU time saving.
To solve the integral equation (4), the unknown surface charge den

sities can be expanded as:

N

PO"k (lk) == L b~k)wn(lk),
n=l

(5)

where h(k) == {bik ) , ... , b~)}, are N-dimensional vectors of unknown
coefficients, and {wn(lk)}' n == 1, ... , N, is a suitable set of basis functions
defined on (J"k. By enforcing the Dirichlet boundary conditions on the
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(6)

is equivalent, in the spirit of Galerkin's procedure,3 to requiring that

1ip(lk' Yb)wn(lk)dlk == 0, n == 1,2, ... ,N. (7)
(Jk

The problem can thus be conveniently cast into a block-matrix form:

lLJb == c. (8)

Letting P the number of arcs in the rounded portion of the contour aso,
the system (8) is of rank NP. Specifically,

where

c== (9)

C~k) == -A1wi(lk)gR(lk, Yb)dlk, i == 1, ... , N; k == 1, ... , P, (10)
(Jk

b(l)

b(2)
b == (11)

b(P)

where the unknown expansion coefficients b~k) are defined by (5), and

[L] ==

[L~l)]

[L~,2)]

[L~,2)]

[L~2)]

[L~'P)]

[L~'P)]
(12)
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[L~k)]ij = lk lk gR(lk, Inwi(h)wJUndh dl{,

i,}== 1, ... ,N, k== 1, ... ,P,

[L~,q)]ij == 11 gR(lp, Iq)wi(lp)Wj(lq)dlpdlq,
ap aq

i,} == 1, ... , N, p, q == 1, ... , P.

(13)

(14)

The principal diagonal submatrices L~k) in the block-matrix L
describe self-interactions taking place between points lying on the same
rounded arc, k, of aSa.

The remaining submatrices [L~,q)] describe mutual interaction
between points located on different arcs, e.g., p, q. Due to RDGF
symmetry, the whole block-matrix [L] is easily recognized to be sym
metrical. Furthermore, it could be proved that it is also positive definite
and hence non-singular.?

Having solved the above system, the scalar potential and related
quantities, including Laslett coefficients, can be computed using Eq. (4).

3 IMAGE FIELDS AND LASLETT COEFFICIENTS

The electromagnetic field produced by a thin beam in a vacuum
chamber can be conveniently split into the sum of two terms: 1

(15)

where the space charge field describes the free-space effect of all other
particles in the beam and depends on the transverse charge distribution
only. Conversely, the image field depends on the boundary shape,
representing the effect of the images of the beam. It can be obtained
from the whole field by subtracting the free-space term. The beam
dynamics is analyzed (usually for small displacements from the equili
brium position) in terms of these fields. Two cases are commonly con
sidered: incoherent case (beam center of charge coincident with beam
equilibrium position, r == req., and test particle displaced thereof, r # rb,
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single particle effect); coherent case (beam center of charge displaced off
the equilibrium position, Y =I Yeq., and coincident with test particle,
Y == Yb, whole beam effect).

In both cases the general solution for the transverse oscillation of the
beam can be written in terms of two normal modes, i.e. special solutions
where the oscillations in the x, y directions have the same frequency (see
Ref. 8, where normal-mode Laslett coefficients are introduced and
thoroughly discussed). The effect of the image fields is conveniently
described by the so-called tune-shifts, i.e. the deviations of the normal
mode frequencies from the betatron frequency, which can be factored as

b..v == FE. (16)

(17)

Here the factor F depends only on the beam and machine features,

F== -NRro
7r(35ro vL2

N being the total number of particles in the beam, R the machine radius,
ro the classical particle radius, v the nominal tune, L the transverse size
of the chamber (e.g., its radius), and the factor E is the image or Laslett
coefficient:

2{ [ 2 ]1/2}_ ~ 8xux + 8yuy (8yuy - 8xux) x x
E - 4A 2 ± 2 +uxuxuyUy ,

where A == Nq/27rR is the beam linear charge density

(18)

incoherent case,

coherent case,
(19)

and the ± signs refer to the two normal modes. Accordingly, for
computing Laslett coefficients we need the image field derivatives with
respect to x,y (incoherent) and Xb,Yb (coherent). These derivatives can
be obtained using the results presented in Section 2, together with
Cauchy-Riemann equations, yielding

oX~j(r, rb) == -Oyel(r, Yb)

P,N 1
= - L b}k) a~ gR (r, h)w;(h)dh - Aax~ g(im.) (r, rb), (20)

k,i=l (J}
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where }, I == x, y with} # I,

(23)

The g(im.) derivatives are easily computed analytically, while the d/k
) ,

h(k) coefficients can be evaluated as:

d == [L]-18xb c,

f == [L]-18yb c.

(24)

(25)

Note that, as r ~ rb, the above expressions contain indeterminate forms
(00 - 00), appearing in g(im.) derivatives. Analytical evaluations of these

limits are reported in Appendix B.

4 NUMERICAL IMPLEMENTATION

In this section we discuss a number of issues, related to the choice of
basis and test functions, the computation of the MoM matrices and the

numerical solution of the matrix problems.
As previously stated, we used a set of (partially overlapping) piece

wise parabolic subdomain basis function. It is convenient to relate the
local arc-length lk on O"k to the local curvature radius Rk through the
local angle ¢(k), via lk == Rk¢(k) (see Figure 2). Hence (dropping the suffix

k for simplicity)

¢i - Ll¢(l - bi1) :::; ¢ < ¢i + Ll¢(1 - biN), i == 1,2, ... , N, (26)
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FIGURE 2 Absolute and local coordinate systems.

where ba.¢ is the angular discretization step (assumed the same for all
arcs), and Drs is the Kronecker symbolt (see Figure 3).

This choice yields some benefits. First, no polygonal approximation
of the arcs is implied, resulting into fewer functions being needed for a
given accuracy. As a matter of fact, taking ba.¢ rv w/10 was always suf
ficient to achieve an accuracy better than 0.1 % on potentials, fields
and Lasletts. Furthermore, the choice of subdomain basis functions,
rather than entire-domain ones, results into a limited number of singular
integrals+ in the computation of L~k) elements, due to the (logarithmic)
singularity of the RDGF (see Appendix B).

Most integrals (13), (14) and (10) needed to compute the block-matrix
L and vectors c, d,fcan be evaluated analytically, due to the specially
simple form of the chosen basis and test functions. However, there is no
significant loss in accuracy or in CPU time in computing the c~k), d/k

) ,

t When an extremum lies on the rectangular boundary (i = 1, i = N) the definition (26)
provides the correct behavior of the surface charge density at such a point, where the
charge may differ from zero, but its derivative must vanish.

t It is clear from Eq. (13) that singularities may appear only in the presence ofan overlap
between basis and test functions, which, in view of (26) may happen only for Ii - il :::; 1.
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FIGURE 3 Piece-wise parabolic basis and test functions.

h(k), [L~,q)]ij by means of standard numerical integration routines
appropriate for regular and singular integrands, respectively.9

The linear system (8) is solved numerically, e.g., using Cholesky's
decomposition. 9 Due to the relatively small size of the problem
(rv 20 x 20 typical), the choice of the solver does not affect appreciably
the overall accuracy and CPU time.

5 COMPUTATIONAL FEATURES

In this section we discuss the main computational features of the pro
posed method.

The fundamental steps required for computing the Laslett coeffi
cients can be summarized as follows:

• computation of MoM block-matrix and forcing vectors (quadrature
formulas);

• solution of linear system (matrix inversion);
• computation of Laslett coefficients (derivatives).

The first task involves evaluation of PN(N+ 1)/2 double integrals for
the self-interaction matrices L~k), plus N 2pcp - 1)/2 double integrals
for mutual-interaction matrices L~,q) , plus 3PN integrals for computing
the forcing vectors c, d, f
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However, capitalizing on the possible symmetries of the structure can
reduce the number of elements to compute by a factor two (stadium,
cut-circle geometries) to four (rounded-corner square).

The accuracy of solutions based on Galerkin methods shows a
peculiar dependance on the number N of basis-test functions used (see,
e.g., Ref. 3). The accuracy increases steeply upon increasing N, until a
critical value is reached. Further increasing N does not improve the
accuracy, and may eventually lead to numerical instabilities, due to ill
conditioning of the involved matrices. In our case, the above critical
value of N was ~ 20 (five basis functions per rounded corner), inde
pendent of the pipe size, due to our judicious choice of Green's and basis
test functions. Storage and CPU requirements are thus very mild.

Note that the MoM matrix does not depend on the line source posi
tion. Hence, computation of Laslett coefficients at different points does
not require a new computation and inversion of the block matrix [L],
while requiring only re-computation of the forcing vectors c, d, f

The most attractive feature of the proposed algorithm, however,
resides in our opinion in the possibility ofcomputing Laslett coefficients
in an analytical-numerical hybrid scheme. This is related to the feature,
typical of the Galerkin version of MoM, of yielding an analytic (though
approximate) solution of the Poisson problem, featuring the correct
singular behavior. All further manipulations needed to compute the
Laslett coefficients, including the separation of free-space term, and the
computation of derivatives up to second order, can thus be performed
analytically. This is obviously impossible in standard numerical ap
proaches based on finite-elements or finite-difference methods, which,
as a consequence exhibit worse accuracy and longer computing time.

6 NUMERICAL RESULTS

In order to check the accuracy of the proposed method we compared
our results with the exact analytical ones available for the circular cross
section geometry. In Figure 4 the percent errors are displayed for both
the incoherent and coherent Laslett coefficients as functions of the
scaled radial distance p == (2/a) [(x - a/2)2 + (y - a/2)2]1/2, al2 being
the pipe radius, and (aI2, a12) the pipe center. The agreement is very
good.
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FIGURE 4 Circular pipe. Percent error on incoherent and coherent Laslett
coefficient vs. scaled radial distance, p = (2/a) [(x - a/2)2 + (y - a/2)2] 1/2.

The results obtained for a number of different geometries (square
with rounded corners, stadium and cut-circle) relevant to LHC are
collected in Figures 5-13.

For the square pipe with rounded corners, we confirm a number of
results valid for the sharp-corner case, 10,11 viz.: (i) the square geometry
has a smaller coherent tune-shift as compared to the circular one; (ii) this
holds true in the coherent case at () == 0 and for both the incoherent and
coherent cases at () == 1r/4. The incoherent and coherent (both normal
modes) Laslett coefficients as functions of the rounded-corners (equal)
radii, for several angular positions () and for p == 0.1 are shown in
Figures 5-7. In the coherent case the influence of the rounded-corners
radius is almost negligible, while in the incoherent case the Laslett
coefficients along the diagonal are manifestly smaller than in any other
direction, and do vanish for some value of the corners' radii.

The incoherent and coherent (both normal modes) Laslett coefficient
level contours for the stadium shaped cross section geometry depicted in
Figure 8, are displayed in Figures 8-10.
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(2nd normal mode) vs. rounded-corner radius, at p = 0.1, for several values of angular
position.

For comparison, Figures 11-13 refer to the cut-circle geometry
sketched in Figure 11.

7 CONCLUSIONS AND RECOMMENDATIONS

A novel approach for computing Laslett coefficients for rounded rect
angular geometries with perfectly conducting pipe walls has been
presented.

The algorithm is based upon a clever implementation ofMoM, which
leads to a small-size linear matrix problems. Comparison with known
solutions and analysis of computational features indicate that the
proposed method is fairly accurate and fast.

The incoherent and coherent Laslett coefficients for a number of
geometries relevant to LHC have been accordingly computed.

More or less obvious extensions include the computation of magnetic
Laslett coefficients, and imperfectly conducting walls.
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APPENDIX A - RAPIDLY CONVERGING
EXPANSION OF RDGF

The scalar (static) Green's function for the rectangular geometry is
considered. The well-known eigenfunctions expansions

(AI)

(A2)

(A3)

is slowly convergent, especially close to the source point. Using
Poisson's transformation,13 after some lengthy algebra, the following
rapidly converging series is obtained:6

,7

(A4)

where

T~q(r,rb) = 1 - 2exp [IY - (-l)PYb + 2bml~] cos [~(X - (-l)qXb)]

+exp [ -2IY-(-1)PYb+2bml~J. (A5)

It is easily recognized that the (logarithmic) singularity of gR appears in
the Tbo term. It was found that the accuracy obtained by taking the first
seven terms (m == ----,-3, ... ,3) is sufficient for all practical purposes.

APPENDIX B - RELEVANT LIMITS

We consider the image Green's function introduced in Section 3:

g(im·)(r,rb) == gR(r,rb) - go(r,rb). (BI)

As shown in Section 3, the computation of image fields and their
derivatives requires the evaluation of limits for r -t rb of g(im.) and
its derivatives. As previously stated, these limits involve (ex) - ex))
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indeterminate forms. In this appendix we outline the main steps for their
computation. First, it is expedient to split the function g as follows:

( )
(reg.) ( ) (sing.) ( )

gR Y, Yb == gR Y, Yb + gR Y, Yb , (B2)

(B3)

(B4)

where the singular term is easily recognized to be (see Appendix A)

(sing.) ( ) 1 rIO ( )gR Y,Yb == - og 0 Y,Yb,

TbO(r,rb) = 1 - 2exp [ - ~ Iy - Ybl] cos [~(x - Xb)]

+ exp [ - 2~ Iy - Ybl].

By expanding (g~ing.) - gO)(Y,Yb) in Taylor's series around Y==Yb we
obtain

where ~ rv (x - Xb) rv (y - Yb). The singular limits needed to evaluate the
image fields and their derivatives can be now readily computed.
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