40 research outputs found

    TMS over V5 disrupts motion prediction

    Get PDF
    Given the vast amount of sensory information the brain has to deal with, predicting some of this information based on the current context is a resource-efficient strategy. The framework of predictive coding states that higher-level brain areas generate a predictive model to be communicated via feedback connections to early sensory areas. Here, we directly tested the necessity of a higher-level visual area, V5, in this predictive processing in the context of an apparent motion paradigm. We flashed targets on the apparent motion trace in-time or out-of-time with the predicted illusory motion token. As in previous studies, we found that predictable in-time targets were better detected than unpredictable out-of-time targets. However, when we applied functional magnetic resonance imaging-guided, double-pulse transcranial magnetic stimulation (TMS) over left V5 at 13–53 ms before target onset, the detection advantage of in-time targets was eliminated; this was not the case when TMS was applied over the vertex. Our results are causal evidence that V5 is necessary for a prediction effect, which has been shown to modulate V1 activity (Alink et al. 2010). Thus, our findings suggest that information processing between V5 and V1 is crucial for visual motion prediction, providing experimental support for the predictive coding framework

    Transfer of Predictive Signals Across Saccades

    Get PDF
    Predicting visual information facilitates efficient processing of visual signals. Higher visual areas can support the processing of incoming visual information by generating predictive models that are fed back to lower visual areas. Functional brain imaging has previously shown that predictions interact with visual input already at the level of the primary visual cortex (V1; Harrison et al., 2007; Alink et al., 2010). Given that fixation changes up to four times a second in natural viewing conditions, cortical predictions are effective in V1 only if they are fed back in time for the processing of the next stimulus and at the corresponding new retinotopic position. Here, we tested whether spatio-temporal predictions are updated before, during, or shortly after an inter-hemifield saccade is executed, and thus, whether the predictive signal is transferred swiftly across hemifields. Using an apparent motion illusion, we induced an internal motion model that is known to produce a spatio-temporal prediction signal along the apparent motion trace in V1 (Muckli et al., 2005; Alink et al., 2010). We presented participants with both visually predictable and unpredictable targets on the apparent motion trace. During the task, participants saccaded across the illusion whilst detecting the target. As found previously, predictable stimuli were detected more frequently than unpredictable stimuli. Furthermore, we found that the detection advantage of predictable targets is detectable as early as 50–100 ms after saccade offset. This result demonstrates the rapid nature of the transfer of a spatio-temporally precise predictive signal across hemifields, in a paradigm previously shown to modulate V1

    TMS Over V5 Disrupts Motion Prediction

    Get PDF
    Given the vast amount of sensory information the brain has to deal with, predicting some of this information based on the current context is a resource-efficient strategy. The framework of predictive coding states that higher-level brain areas generate a predictive model to be communicated via feedback connections to early sensory areas. Here, we directly tested the necessity of a higher-level visual area, V5, in this predictive processing in the context of an apparent motion paradigm. We flashed targets on the apparent motion trace in-time or out-of-time with the predicted illusory motion token. As in previous studies, we found that predictable in-time targets were better detected than unpredictable out-of-time targets. However, when we applied functional magnetic resonance imaging-guided, double-pulse transcranial magnetic stimulation (TMS) over left V5 at 13-53 ms before target onset, the detection advantage of in-time targets was eliminated; this was not the case when TMS was applied over the vertex. Our results are causal evidence that V5 is necessary for a prediction effect, which has been shown to modulate V1 activity (Alink et al. 2010). Thus, our findings suggest that information processing between V5 and V1 is crucial for visual motion prediction, providing experimental support for the predictive coding framewor

    Water Use of Asiatic Wild Asses in the Mongolian Gobi

    Get PDF
    Water is a key resource for most large bodied mammals in the world’s arid areas. With the growing human population, access to water for wildlife often becomes compromised. Equids are typical inhabitants of semi-arid to arid rangelands and need regular access to fresh water. However, their water needs are difficult to study under free-ranging conditions. In this study we investigated Asiatic wild ass (Equus hemionus) use of permanent water points in the Great Gobi B Strictly Protected Area (SPA) in south-western Mongolia. We combined observational data from one specific water point with high frequency GPS location data from one radio-collared Asiatic wild ass mare. Observations and GPS data revealed that wild asses come to drink during all 24-hours of the day without an apparent diurnal pattern. The majority of wild asses came to the water point alone or in small groups. Other ungulates were largely ignored by wild asses, but the arrival of humans and their transportation devices almost always resulted in flight behavior. The monthly drinking frequency varied from every 1.5 to 2.2 days during the hot and dry season in June and August to every 2.3 to 3.8 days in April, May and September. Longer intervals between successive visits to permanent water points may explain why Asiatic wild asses can make use of pastures further away from water than sympatric Przewalski’s horses (Equus ferus przewalskii). The lack of a clear diurnal pattern suggests that there is no specific time window in which wild ass are particularly vulnerable to disturbances at water points. However the high disturbance potential of humans and their transportation devices makes it desirable to restrict human impact at water points by re-routing transportation routes, or requiring a minimum distance from water for herder camps and wildlife viewing facilities

    Decoding natural sounds in early “visual” cortex of congenitally blind individuals

    Get PDF
    Complex natural sounds, such as bird singing, people talking, or traffic noise, induce decodable fMRI activation patterns in early visual cortex of sighted blindfolded participants [1]. That is, early visual cortex receives non-visual and potentially predictive information from audition. However, it is unclear whether the transfer of auditory information to early visual areas is an epiphenomenon of visual imagery or, alternatively, whether it is driven by mechanisms independent from visual experience. Here, we show that we can decode natural sounds from activity patterns in early “visual” areas of congenitally blind individuals who lack visual imagery. Thus, visual imagery is not a prerequisite of auditory feedback to early visual cortex. Furthermore, the spatial pattern of sound decoding accuracy in early visual cortex was remarkably similar in blind and sighted individuals, with an increasing decoding accuracy gradient from foveal to peripheral regions. This suggests that the typical organization by eccentricity of early visual cortex develops for auditory feedback, even in the lifelong absence of vision. The same feedback to early visual cortex might support visual perception in the sighted [1] and drive the recruitment of this area for non-visual functions in blind individuals [2, 3]

    Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism

    Get PDF
    Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism

    Treatment of forefoot problems in older people: study protocol for a randomised clinical trial comparing podiatric treatment to standardised shoe advice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foot problems in general and forefoot problems in particular can lead to a decrease in mobility and a higher risk of falling. Forefoot problems increase with age and are more common in women than in men. Around 20% of people over 65 suffer from non-traumatic foot problems and 60% of these problems are localised in the forefoot. Little is known about the best way to treat forefoot problems in older people. The aim of this study is to compare the effects of two common modes of treatment in the Netherlands: shoe advice and podiatric treatment. This paper describes the design of this study.</p> <p>Methods</p> <p>The study is designed as a pragmatic randomised clinical trial (RCT) with 2 parallel intervention groups. People aged 50 years and over who have visited their general practitioner (GP) with non traumatic pain in the forefoot in the preceding year and those who will visit their GP during the recruitment period with a similar complaint will be recruited for this study. Participants must be able to walk unaided for 7 metres and be able to fill in questionnaires. Exclusion criteria are: rheumatoid arthritis, neuropathy of the foot or pain caused by skin problems (e.g. warts, eczema). Inclusion and exclusion criteria will be assessed by a screening questionnaire and baseline assessment. Those consenting to participation will be randomly assigned to either a group receiving a standardised shoe advice leaflet (n = 100) or a group receiving podiatric treatment (n = 100). Primary outcomes will be the severity of forefoot pain (0-10 on a numerical rating scale) and foot function (Foot Function 5-pts Index and Manchester Foot Pain and Disability Index). Treatment adherence, social participation and quality of life will be the secondary outcomes. All outcomes will be obtained through self-administered questionnaires at the start of the study and after 3, 6, 9 and 12 months. Data will be analysed according to the "intention-to-treat" principle using multilevel level analysis.</p> <p>Discussion</p> <p>Strength of this study is the comparison between two common primary care treatments for forefoot problems, ensuring a high external validity of this trial.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2212">NTR2212</a></p

    Varieties of cognitive penetration in visual perception

    No full text
    Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained
    corecore