18 research outputs found

    VISTA Deficiency Attenuates Antibody-induced Arthritis and Alters Macrophage Gene Expression in Response to Simulated Immune Complexes

    Get PDF
    In addition to activated T cells, the immune checkpoint inhibitor β€œV domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated. Methods: VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages. Results: VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn). Conclusions: VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes

    VISTA Deficiency Attenuates Antibody-induced Arthritis and Alters Macrophage Gene Expression in Response to Simulated Immune Complexes

    Get PDF
    In addition to activated T cells, the immune checkpoint inhibitor β€œV domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated. Methods: VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages. Results: VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn). Conclusions: VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes

    Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data provide significant evidence to support the hypothesis that there are sub-populations of cells within solid tumors that have an increased tumor initiating potential relative to the total tumor population. CD133, a cell surface marker expressed on primitive cells of neural, hematopoietic, endothelial and epithelial lineages has been identified as a marker for tumor initiating cells in solid tumors of the brain, colon, pancreas, ovary and endometrium. Our objectives were to assess the relative level of CD133 expressing cells in primary human endometrial tumors, confirm their tumorigenic potential, and determine whether CD133 expression was epigenetically modified.</p> <p>Methods</p> <p>We assessed CD133 expression in primary human endometrial tumors by flow cytometry and analyzed the relative tumorigenicity of CD133+ and CD133- cells in an <it>in vivo </it>NOD/SCID mouse model. We assessed potential changes in CD133 expression over the course of serial transplantation by immunofluorescence and flow cytometry. We further examined CD133 promoter methylation and expression in normal endometrium and malignant tumors.</p> <p>Results</p> <p>As determined by flow cytometric analysis, the percentage of CD133+ cells in primary human endometrial cancer samples ranged from 5.7% to 27.4%. In addition, we confirmed the tumor initiating potential of CD133+ and CD133<sup>- </sup>cell fractions in NOD/SCID mice. Interestingly, the percentage of CD133+ cells in human endometrial tumor xenografts, as evidenced by immunofluorescence, increased with serial transplantation although this trend was not consistently detected by flow cytometry. We also determined that the relative levels of CD133 increased in endometrial cancer cell lines following treatment with 5-aza-2'-deoxycytidine suggesting a role for methylation in the regulation of CD133. To support this finding, we demonstrated that regions of the CD133 promoter were hypomethylated in malignant endometrial tissue relative to benign control endometrial tissue. Lastly, we determined that methylation of the CD133 promoter decreases over serial transplantation of an endometrial tumor xenograft.</p> <p>Conclusions</p> <p>These findings support the hypotheses that CD133 expression in endometrial cancer may be epigenetically regulated and that cell fractions enriched for CD133+ cells may well contribute to endometrial cancer tumorigenicity, pathology and recurrence.</p

    Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours

    Get PDF
    Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy

    Genome Wide DNA Copy Number Analysis of Serous Type Ovarian Carcinomas Identifies Genetic Markers Predictive of Clinical Outcome

    Get PDF
    Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs) were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS) and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and 20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous tumors into clinically relevant treatment subgroups

    A Syngeneic Mouse Model of Epithelial Ovarian Cancer Port Site Metastases

    No full text
    Epithelial ovarian cancer (EOC) is a deadly gynecologic malignancy, but animal models for the study of EOC pathophysiology and drug efficacy are limited. Based on the finding that women with EOC are at risk for metastasis at a trocar site after laparoscopy, we developed a syngeneic murine model of port-site metastasis of EOC. We leveraged the ID8 murine EOC cell line to induce intra-peritoneal tumors in mice. Once durable intraperitoneal tumor was confirmed with bioluminescence imaging, intra-abdominal wall tumors were induced by abdominal wall puncture with a hollow bore needle. This resulted in a robust system in which C57BL/6 mice developed metastatic deposits at a rate of 66.7%β€―Β±β€―10.77; no intra-abdominal wall metastases were seen in control samples (Pβ€―=β€―.0003, CI 41.16–90.84). Immunodeficient NOD SCID gamma mice developed puncture site metastases in 70%β€―Β±β€―10.0 of mice and also had no metastases documented in control sites (Pβ€―=β€―.002, CI 42.24–97.76). In addition we were able to demonstrate the presence of immune infiltrates within the metastatic deposits of C57BL/6 mice via IHC. Therefore, in this study we demonstrate the predictable development of invasive abdominal wall metastases in a syngeneic mouse model of EOC. This model enables studies of the metastatic process and provides a novel system in which to test the effect of therapies on a clinically-relevant model in an immune competent mouse

    VISTA Regulates the Development of Protective Antitumor Immunity

    No full text
    V-domain Ig suppressor of T cell activation (VISTA) is a novel negative checkpoint ligand that is homologous to PD-L1 and suppresses T cell activation. This study demonstrates the multiple mechanisms whereby VISTA relieves negative regulation by hematopoietic cells and enhances protective anti-tumor immunity. VISTA is highly expressed on myeloid cells and Foxp3(+)CD4(+) regulatory cells, but not on tumor cells within the tumor microenvironment (TME). VISTA monoclonal antibody (mab) treatment increased the number of tumor-specific T cells in the periphery, and enhanced the infiltration, proliferation and effector function of tumor-reactive T cells within the TME. VISTA blockade altered the suppressive feature of the TME, by decreasing the presence of monocytic myeloid-derived suppressor cells and increasing the presence of activated DCs within the TME. In addition, VISTA blockade impaired the suppressive function and reduced the emergence of tumor-specific Foxp3(+)CD4(+) regulatory T cells. Consequently, VISTA mab administration as a monotherapy significantly suppressed the growth of both transplantable and inducible melanoma. Initial studies explored a combinatorial regimen using VISTA blockade and a peptide-based cancer vaccine with TLR agonists as adjuvants. VISTA blockade synergized with the vaccine to effectively impair the growth of established tumors. Our study therefore establishes a foundation for designing VISTA-targeted approaches either as a monotherapy or in combination with additional immune-targeted strategies for cancer immunotherapy

    Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours

    Get PDF
    Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy
    corecore