6 research outputs found

    Sintesis Poli N-Isopropilakrilamida (PNIPA)/Polityrosin (PTYR) Interpenetrating Polymer Networks (IPNs) Bertanda Iodium-125

    Get PDF
    Saat ini perkembangan polimer telah semakin maju, berbagai aplikasi polimer telah dikembangkan baik di sektor energi, pangan maupun kesehatan. PNIPA/PTYR IPNs bertanda iodium-125 dapat dimanfaatkan sebagai sumber terapi kanker. PNIPA/PTYR merupakan polimer peka temperatur. Tujuan dari penelitian ini adalah sintesis PNIPA/PTYR IPNs bertanda iodium-125. Polityrosin ditandai dengan iodium-125 kemudian secara simultan direaksikan dengan monomer N-isopropilakrilamida melalui polimerisasi radikal bebas dengan inisiator amonium persulfat (APS) dan tetrametiletilenediamin (TEMED) untuk memperoleh PNIPA/PTYR IPNs bertanda iodium-125. Kemurnian radiokimia PNIPA/PTYR IPNs bertanda iodium-125 diukur dengan krom atografi lapis tipis (KLT) dengan fasa gerak 2 propanol: 1 butanol: 0,2 M NH4OH. Selain Itu, stabilitas PNIPA/PTYR IPNs bertanda iodium-125 diuji pada media air. PNIPA/PTYR IPNs telah berhasil ditandai dengan iodium-125 dengan rendemen penandaan sebesar 37,6 ± 4,2 % (n = 3). Hasil pengamatan visual, ditunjukkan bahwa polimer mengalami Perubahan sifat pada temperatur 32 oC sampai dengan 34°C. Hasil H-NMR hanya menunjukkan spektrum dari polimer PNIPA. Berdasarkan pemeriksaan KLT, kemurnian radiokimia PNIPA/PTYR IPNs bertanda iodium-125 adalah 95,93%. Pengujian stabilitas polimer bertanda iodum-125 pada media air pada T = 37°C selama 2 minggu menunjukkan bahwa iodium-125 yang masih tertahan pada polimer adalah 71,3 ± 6,2 %

    The mineral content ratio and the organic to the mineral ratio as a function of PMI is shown.

    No full text
    <p>For Raman microscopic imaging only the mineral content ratio was determined. Mapping results of mineral content ratio and organic to mineral ratio is given in the supplementary <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0174552#pone.0174552.s003" target="_blank">S3 Fig</a>.</p

    Infrared spectroscopic chemi-maps obtained for the detection of bone mineral at 1042 cm<sup>-1</sup>, of carbohydrates at 1185 cm<sup>-1</sup>, of C-H deformation modes at 1450 cm<sup>-1</sup> to 1350 cm<sup>-1</sup> and of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars at 3000 cm<sup>-1</sup> to 2800 cm<sup>-1</sup>.

    No full text
    <p>Infrared spectroscopic chemi-maps obtained for the detection of bone mineral at 1042 cm<sup>-1</sup>, of carbohydrates at 1185 cm<sup>-1</sup>, of C-H deformation modes at 1450 cm<sup>-1</sup> to 1350 cm<sup>-1</sup> and of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars at 3000 cm<sup>-1</sup> to 2800 cm<sup>-1</sup>.</p

    Representative reflection (A) -, ATR (B)—and Raman (C)—spectra of forensic and archaeological bone samples are shown.

    No full text
    <p>II = phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars at 3000 cm<sup>-1</sup> to 2800 cm<sup>-1</sup>, I = indicator for bone mineralization at 1042 cm<sup>-1</sup> and carbohydrates at 1185 cm<sup>-1</sup>, IV = protein CH<sub>2</sub> deformation at 1446 cm<sup>-1</sup> and amide III at 1272 cm<sup>-1</sup>, III = of ν<sub>2</sub> PO<sub>4</sub><sup>3−</sup> at 450 cm<sup>-1</sup> and ν<sub>4</sub> PO<sub>4</sub><sup>3−</sup> from 590 cm<sup>-1</sup> to 584 cm<sup>-1</sup>.</p
    corecore