46 research outputs found

    Modelling Theory Communities in Science

    Get PDF
    This position paper presents a framework for modelling theory communities where theories interact as agents in a conceptual network. It starts with introducing the difficulties in integrating scientific theories by discussing some recent approaches, especially of structuralist theory of science. Theories might differ in reference, extension, scope, objectives, functions, architecture, language etc. To address these potential integration barriers, the paper employs a broad definition of "scientific theory", where a theory is a more or less complex description a describer puts forward in a context called science with the aim of making sense of the world. This definition opens up the agency dimension of theories: theories "do" something. They work on a - however ontologically interpreted - subject matter. They describe something, and most of them claim that their descriptions of this "something" are superior to those of others. For modelling purposes, the paper makes use of such description behaviour of scientific theories on two levels. The first is the level where theories describe the world in their terms. The second is a sub-case of the first: theories can of course describe the description behaviour of other theories concerning this world and compare with own description behaviour. From here, interaction and potential cooperation between theories could be potentially identified by each theory perspective individually. Generating inclusive theory communities and simulating their dynamics using an agent-based model means to implement theories as agents; to create an environment where the agents work as autonomous entities in a self-constituted universe of discourse; to observe what they do with this environment (they will try to apply their concepts, and instantiate their mechanisms of sense-making); and to let them mutually describe and analyse their behaviour and suggest areas for interaction. Some mechanisms for compatibility testing are discussed and the prototype of the model with preliminary applications is introduced.Simulating Science, Theory Interaction, Agent-Based Modelling, Theory Network

    Simulating Knowledge-Generation and -Distribution Processes in Innovation Collaborations and Networks

    Get PDF
    An agent-based simulation model representing a theory of the dynamic processes involved in innovation in modern knowledge-based industries is described. The agent-based approach al-lows the representation of heterogeneous agents that have individual and varying stocks of knowledge. The simulation is able to model uncertainty, historical change, effect of failure on the agent population, and agent learning from experience, from individual research and from partners and collaborators. The aim of the simulation exercises is to show that the artificial innovation networks show certain characteristics they share with innovation networks in knowledge intensive industries and which are difficult to be integrated in traditional models of industrial economics.innovation networks, agent-based modelling, scale free networks

    The quality of social simulation : an example from research policy

    Get PDF
    This contribution deals with the assessment of the quality of a simulation. After discussing this issue on a general level, we apply and test the assessment mechanisms using an example from policy modelling

    Simulating the Social Processes of Science

    Get PDF
    Science is the result of a substantially social process. That is, science relies on many inter-personal processes, including: selection and communication of research findings, discussion of method, checking and judgement of others' research, development of norms of scientific behaviour, organisation of the application of specialist skills/tools, and the organisation of each field (e.g. allocation of funding). An isolated individual, however clever and well resourced, would not produce science as we know it today. Furthermore, science is full of the social phenomena that are observed elsewhere: fashions, concern with status and reputation, group-identification, collective judgements, social norms, competitive and defensive actions, to name a few. Science is centrally important to most societies in the world, not only in technical, military and economic ways, but also in the cultural impacts it has, providing ways of thinking about ourselves, our society and our environment. If we believe the following: simulation is a useful tool for understanding social phenomena, science is substantially a social phenomenon, and it is important to understand how science operates, then it follows that we should be attempting to build simulation models of the social aspects of science. This Special Section of <i>JASSS</i> presents a collection of position papers by philosophers, sociologists and others describing the features and issues the authors would like to see in social simulations of the many processes and aspects that we lump together as "science". It is intended that this collection will inform and motivate substantial simulation work as described in the last section of this introduction.Simulation, Science, Science and Technology Studies, Philosophy, Sociology, Social Processes

    Advances in Computational Social Science and Social Simulation

    Get PDF
    Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH".Conferència organitzada pel Laboratory for Socio­-Historical Dynamics Simulation (LSDS-­UAB) de la Universitat Autònoma de Barcelona.Readers will find results of recent research on computational social science and social simulation economics, management, sociology,and history written by leading experts in the field. SOCIAL SIMULATION (former ESSA) conferences constitute annual events which serve as an international platform for the exchange of ideas and discussion of cutting edge research in the field of social simulations, both from the theoretical as well as applied perspective, and the 2014 edition benefits from the cross-fertilization of three different research communities into one single event. The volume consists of 122 articles, corresponding to most of the contributions to the conferences, in three different formats: short abstracts (presentation of work-in-progress research), posters (presentation of models and results), and full papers (presentation of social simulation research including results and discussion). The compilation is completed with indexing lists to help finding articles by title, author and thematic content. We are convinced that this book will serve interested readers as a useful compendium which presents in a nutshell the most recent advances at the frontiers of computational social sciences and social simulation researc

    Künstliche Intelligenz-Forschung in Deutschland. Die Etablierung eines Hochtechnologie-Fachs

    No full text
    Ahrweiler P. Künstliche Intelligenz-Forschung in Deutschland. Die Etablierung eines Hochtechnologie-Fachs. Münster, New York: Waxman; 1995

    Computer Simulations in Science and Technology Studies

    No full text
    Ahrweiler P, Wörmann S. Computer Simulations in Science and Technology Studies. In: Ahrweiler P, Gilbert N, eds. Computer Simulations in Science and Technology Studies. London: Springer; 1998: 244

    SiSiFOS – Simulating Studies on the internal Formation and the Organization of Science

    No full text
    Ahrweiler P, Wolkenhauer R. SiSiFOS – Simulating Studies on the internal Formation and the Organization of Science. In: Ahrweiler P, Gilbert N, eds. Computer Simulations in Science and Technology Studies. London: Springer; 1998: 244
    corecore