13 research outputs found

    Prevention of sarcopenia in patients with obesity after bariatric and metabolic surgery: The effect of programmed training on the muscle tissue and anthropometric functions – A randomized controlled trial (SarxOb study protocol)

    Get PDF
    Obesity is a serious metabolic disease that significantly increases cardiovascular risks and other health complications. Sarcopenia is an independent risk factor for morbidity and mortality in patients suffering from obesity that increases the health risks and is associated with cardiac, respiratory and other diseases.  Bariatric and metabolic surgery (BMS) leads to significant changes in body composition. Our pilot study showed that bariatric patients are at risk of sarcopenia after BMS. This finding resulted in a hypothesis that an exercise plan in the experimental group will lead to postural stabilization and a lower decline in muscle homotopy, further leading to a greater reduction in fat mass and a positive effect of exercise on skeletal muscle volume and strength and endocrine-metabolic function. The aim of the present study is to determine the effect of programmed aerobic and strength training on muscle function, volume, and morphology in patients after BMS. The study is a single-center, randomized clinical trial after sleeve gastrectomy focused on muscle tissue. The experimental group will perform targeted physical activity once a week for 12 months and the training plan will include anaerobic and aerobic components. Magnetic resonance imaging of skeletal muscles will be correlated with the values of densitometry examination and changes in body composition, certain blood parameters of myokines, biomechanical analysis of movement abnormalities, and behavioral and dietary counseling. This study will address the research questions about the effect of programmed training on muscle tissue and muscular functions after BMS

    Prevention of sarcopenia in patients with obesity afterbariatric and metabolic surgery: The effect ofprogrammed training on the muscle tissue andanthropometric functions - A randomized controlledtrial (SarxOb study protocol)

    Get PDF
    Obesity is a serious metabolic disease that significantly increases cardiovascular risks and other health complications. Sarcopenia is an independent risk factor for morbidity and mortality in patients suffering from obesity that increases the health risks and is associated with cardiac, respiratory, and other diseases. Bariatric and metabolic surgery (BMS) leads to significant changes in body composition. Our pilot study showed that bariatric patients are at risk of sarcopenia after BMS. This finding resulted in a hypothesis that an exercise plan in the experimental group will lead to postural stabilization and a lower decline in muscle homotopy, further leading to a greater reduction in fat mass and a positive effect of exercise on skeletal muscle volume and strength and endocrine-metabolic function. The aim of the present study is to determine the effect of programmed aerobic and strength training on muscle function, volume, and morphology in patients after BMS. The study is a single-center, randomized clinical trial after sleeve gastrectomy focused on muscle tissue. The experimental group will perform targeted physical activity once a week for 12 months and the training plan will include anaerobic and aerobic components. Magnetic resonance imaging of skeletal muscles will be correlated with the values of densitometry examination and changes in body composition, certain blood parameters of myokines, biomechanical analysis of movement abnormalities, and behavioral and dietary counseling. This study will address the research questions about the effect of programmed training on muscle tissue and muscular functions after BMS.Web of Science23219719

    Development of mobile applications for Android platform in Java programming language

    No full text
    In the bachelor thesis the basics of application programming for the Android operating system are described. In this work Java programming language is used for programming. In the opening part of the thesis the structure of the Android operating system is briefly described. In the following chapters the typical architecture of android applications is explained. Particular components present in almost any Android application are described. The text in the next chapters deals with creation of graphical user interface and persistence. At the end of each chapter comparison with the Java SE platform is given. Finally, a practical application is presented

    Development of mobile applications for Android platform in Java programming language

    No full text
    Ve své bakalářské práci popisuji základy programování aplikací pro operační systém Android. K programování je využit programovací jazyk Java. V úvodu práce je stručně popsána struktura operačního systému Android. Následuje kapitola, která se věnuje charakteristické architektuře Android aplikací. V ní jsou popsány jednotlivé komponenty, které jsou součástí takřka každé Android aplikace. Další kapitoly se zabývají vytvářením grafického uživatelského rozhraní a persistencí. Na konci každé kapitoly se snažím o porovnání s platformou Java SE. Nakonec je představena praktická aplikace.In the bachelor thesis the basics of application programming for the Android operating system are described. In this work Java programming language is used for programming. In the opening part of the thesis the structure of the Android operating system is briefly described. In the following chapters the typical architecture of android applications is explained. Particular components present in almost any Android application are described. The text in the next chapters deals with creation of graphical user interface and persistence. At the end of each chapter comparison with the Java SE platform is given. Finally, a practical application is presented

    Enhancing the CO2 plasticization resistance of PS mixed-matrix membrane by blunt zeolitic imidazolate framework

    No full text
    A novel design to synthesize a defect-free mixed-matrix membrane (MMM) exhibiting superior gas separation performance via fully dispersed blunt zeolitic imidazolate framework (ZIF-8) in polymer matrix has been proposed for the first time. The sphericity and interconnected six-membered-ring (6-MR) pore porosity of ZIF-8 was controlled through an aqueous synthetic process by using a non-ionic surfactant (Pluronics, P123) and deionized water as solvent. The use of surfactant in ZIF-8 synthesis resulted in blunt nanocrystals with increased sphericity and 6-MR pore volume as confirmed by scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherm measurements. Subsequent pure gas permeation tests showed that blunt ZIF-8 increased CO2/N2 separation performance through “ideal morphology” in MMMs as a result of the excellent dispersion of ZIF-8 and good ZIF-8-polymer interfacial adhesion within the polymer matrix. A significant increase in CO2/N2 separation results were obtained with the MMM containing 10wt% loading of blunt ZIF-8 (P51), CO2 permeability of 21.5 Barrer (172.6%), and mixed-gas CO2/N2 selectivity of 43.9 (205.6%). The MMMs further displayed good aging-resistance properties for over 40 days, with considerable potential for long-term operation

    Polymer Nanocomposite Membranes

    No full text
    Based on the results of research works reflected in the scientific literature, the main examples, methods and approaches to the development of polymer inorganic nanocomposite materials for target membranes are considered. The focus is on membranes for critical technologies with improved mechanical, thermal properties that have the necessary capabilities to solve the problems of a selective pervaporation. For the purpose of directional changes in the parameters of membranes, effects on their properties of the type, amount and conditions of nanoparticle incorporation into the polymer matrix were analyzed. An influence of nanoparticles on the structural and morphological characteristics of the nanocomposite film is considered, as well as possibilities of forming transport channels for separated liquids are analyzed. Particular attention is paid to a correlation of nanocomposite structure-transport properties of membranes, whose separation characteristics are usually considered within the framework of the diffusion-sorption mechanism

    Interfacial interaction between CMS layer and substrate: Critical factors affecting membrane microstructure and H-2 and CO2 separation performance from CH4

    No full text
    The claim that quality of membrane fabrication is based on surface smoothness of substrate has been known since the 1960s. In this study, we propose a concept based on the interfacial interaction between the carbon molecular sieving (CMS) selective layer and the Al2O3 substrate to understand the development of the CMS membrane's micro-structure at the molecular level, especially for natural gas purification. We further compare the results with those of our previous work to determine the dominant influence on the structural development of CMS membranes, and discover a remarkable enhancement in H2/CH4 and CO2/CH4 gas pair separation performances that surpass the upper limit for polymer membranes proposed by Robeson. Permselectivity performance was found to be strongly related to substrate properties, and especially to the surface roughness. When TiO2 intermediately layer and polishing technology was used to modify the roughness of the substrate, the supported CMS membrane displayed an improvement of 364% and 144% (or 720.1 ± 16.0 and 86.3 ± 5.1) in H2/CH4 and CO2/CH4 selectivities, respectively, when compared to bare alumina-supported membranes prepared under the same conditions; the H2 permeability also increased from 537.5 to 566.1 Barrer. These results indicated an important connection between the substrate structure and the performance of the CMS membranes, providing a new understanding of the influence of each preparation parameter and a route to tailoring the structure of CMS membranes that benefit gas separation applications

    A comparison on gas separation between PES (polyethersulfone)/MMT(Na-montmorillonite) and PES/TiO2 mixed matrix membranes

    No full text
    Polyethersulfone (PES)-based mixed matrix membranes (MMMs) with the incorporation of inorganic fillers of different shapes (lamellar Na-montmorillonite (MMT) clays and spherical TiO2 nanoparticles) were prepared in this study, and the resulting MMMs were characterized by TGA, DSC, XRD, SEM, and TEM. It was found that inorganic filler agglomeration became more serious at higher-filler-content MMMs. In the case of PES/MMT MMMs, both the CO2 and CH4 permeabilities increased significantly with the increasing filler content and consequently the gas selectivity was greatly reduced. At high MMT loadings (P10 wt.%), Knudsen diffusion became the predominant gas transport mechanism. A different trend was achieved in the case of PES/TiO2 MMMs. The CO2/CH4 selectivity increased from 24.5 (pure PES membrane) to a maximum value of 38.5 at 4 wt.% TiO2 MMM and then decreased with a further increase in TiO2 content (e.g. 17.3 for 20 wt.%). The formation of interface voids and membrane defects in MMMs contributed to the high gas permeabilities and low gas selectivity

    Synthesis, Characterization, and Gas Adsorption Performance of Amine-Functionalized Styrene-Based Porous Polymers

    No full text
    In recent years, porous materials have been extensively studied by the scientific community owing to their excellent properties and potential use in many different areas, such as gas separation and adsorption. Hyper-crosslinked porous polymers (HCLPs) have gained attention because of their high surface area and porosity, low density, high chemical and thermal stability, and excellent adsorption capabilities in comparison to other porous materials. Herein, we report the synthesis, characterization, and gas (particularly CO2) adsorption performance of a series of novel styrene-based HCLPs. The materials were prepared in two steps. The first step involved radical copolymerization of divinylbenzene (DVB) and 4-vinylbenzyl chloride (VBC), a non-porous gel-type polymer, which was then modified by hyper-crosslinking, generating micropores with a high surface area of more than 700 m2 g−1. In the following step, the polymer was impregnated with various polyamines that reacted with residual alkyl chloride groups on the pore walls. This impregnation substantially improved the CO2/N2 and CO2/CH4 adsorption selectivity
    corecore