12 research outputs found

    A new relict stem salamander from the Early Cretaceous of Yakutia, Siberian Russia

    No full text
    A new stem salamander, Kulgeriherpeton ultimum gen. et sp. nov., is described based on a nearly complete atlas (holotype) from the Lower Cretaceous (Berriasian–Barremian) Teete vertebrate locality in southwestern Yakutia (Eastern Siberia, Russia). The new taxon is diagnosed by the following unique combination of atlantal characters: the presence of a transversal ridge and a depression on the ventral surface of the posterior portion of the centrum; ossified portions of the intercotylar tubercle represented by dorsal and ventral lips; the absence of a deep depression on the ventral surface of the anterior portion of the centrum; the absence of pronounced ventrolateral ridges; the absence of spinal nerve foramina; the presence of a pitted texture on the ventral and lateral surfaces of the centrum and lateral surfaces neural arch pedicels; the presence of a short neural arch with its anterior border situated far behind the level of the anterior cotyles; moderately dorsoventrally compressed anterior cotyles; and the absence of a deep incisure on the distal-most end of the neural spine. The internal microanatomical organization of the atlas is characterized by the presence of a thick, moderately vascularized cortex and inner cancellous endochondral bone. The recognition of stem salamanders and other vertebrates with Jurassic affinities in the Early Cretaceous high-latitude (paleolatitude estimate N 63–70°) vertebrate assemblage of Teete suggests that: (i) the large territory of present day Siberia was a refugium for Jurassic relicts; (ii) there were no striking differences in the composition of high-latitude Yakutian and mid-latitude Western Siberian Early Cretaceous vertebrate assemblages; and (iii) there was a smooth transition from the Jurassic to Cretaceous biotas in North Asia

    Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome

    No full text
    To study positioning of the polypeptide release factor eRF1 toward a stop signal in the ribosomal decoding site, we applied photoactivatable mRNA analogs, derivatives of oligoribonucleotides. The human eRF1 peptides cross-linked to these short mRNAs were identified. Cross-linkers on the guanines at the second, third, and fourth stop signal positions modified fragment 31–33, and to lesser extent amino acids within region 121–131 (the “YxCxxxF loop”) in the N domain. Hence, both regions are involved in the recognition of the purines. A cross-linker at the first uridine of the stop codon modifies Val66 near the NIKS loop (positions 61–64), and this region is important for recognition of the first uridine of stop codons. Since the N domain distinct regions of eRF1 are involved in a stop-codon decoding, the eRF1 decoding site is discontinuous and is not of “protein anticodon” type. By molecular modeling, the eRF1 molecule can be fitted to the A site proximal to the P-site-bound tRNA and to a stop codon in mRNA via a large conformational change to one of its three domains. In the simulated eRF1 conformation, the YxCxxxF motif and positions 31–33 are very close to a stop codon, which becomes also proximal to several parts of the C domain. Thus, in the A-site-bound state, the eRF1 conformation significantly differs from those in crystals and solution. The model suggested for eRF1 conformation in the ribosomal A site and cross-linking data are compatible

    Wear patterns and dental functioning in an Early Cretaceous stegosaur from Yakutia, Eastern Russia.

    No full text
    Isolated stegosaurian teeth from the Early Cretaceous high-latitude (palaeolatitude estimate of N 62°- 66.5°) Teete locality in Yakutia (Eastern Siberia, Russia) are characterized by a labiolingually compressed, slightly asymmetrical and mesiodistally denticulated (9-14 denticles) crown, a pronounced ring-like cingulum, as well as a "complex network of secondary ridges". The 63 teeth (found during on-site excavation in 2012, 2017-2019 and screen-washing in 2017-2019) most likely belong to one species of a derived (stegosaurine) stegosaur. Most of the teeth exhibit a high degree of wear and up to three wear facets has been observed on a single tooth. The prevalence of worn teeth with up to three wear facets and the presence of different types of facets (including steeply inclined and groove-like) indicate the tooth-tooth contact and precise dental occlusion in the Teete stegosaur. The microwear pattern (mesiodistally or slightly obliquely oriented scratches; differently oriented straight and curved scratches on some wear facets) suggest a complex jaw mechanism with palinal jaw motion. Histological analysis revealed that the Teete stegosaur is characterized by relatively short tooth formation time (95 days) and the presence of a "wavy enamel pattern". Discoveries of a "wavy enamel pattern" in the Teete stegosaur, in a Middle Jurassic stegosaur from Western Siberia, and in the basal ceratopsian Psittacosaurus, suggest that this histological feature is common for different ornithischian clades, including ornithopods, marginocephalians, and thyreophorans. A juvenile tooth in the Teete sample indicates that stegosaurs were year-round residents and reproduced in high latitudes. The combination of high degree of tooth wear with formation of multiple wear facets, complex jaw motions, relatively short tooth formation time and possibly high tooth replacement rates is interpreted as a special adaptation for a life in high-latitude conditions or, alternatively, as a common stegosaurian adaptation making stegosaurs a successful group of herbivorous dinosaurs in the Middle Jurassic-Early Cretaceous and enabeling them to live in both low- and high-latitude ecosystems
    corecore