35 research outputs found

    Approximations by graphs and emergence of global structures

    Full text link
    We study approximations of billiard systems by lattice graphs. It is demonstrated that under natural assumptions the graph wavefunctions approximate solutions of the Schroedinger equation with energy rescaled by the billiard dimension. As an example, we analyze a Sinai billiard with attached leads. The results illustrate emergence of global structures in large quantum graphs and offer interesting comparisons with patterns observed in complex networks of a different nature.Comment: 6 pages, RevTeX with 5 ps figure

    Magnesium, Iron, Copper and Zinc in Vegetable Roots from Mato Grosso do Sul, Brazil

    Get PDF
    The inorganic components, especially magnesium, iron, copper and zinc contained in vegetable roots are of major importance, but seldom taken into account, either by general practitioners or by dietitians. The goal of this work is to report on magnesium, iron, copper and zinc in potatoes, sweet potatoes, cassava, yam and taro produced, and consumed in Campo Grande, the capital of Mato Grosso do Sul state, Brazil. After previous determination of humidity, the vegetables were digested with a mixture of HNO3 and H2O2 in the microwave digestion system Speedwave®, Berghof, Germany. The levels of trace elements were measured using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, iCap 6000® - Thermo Scientific, USA). Most of the elements analyzed occur at levels within the range reported from international and Brazilian sources. However, iron in common potato, sweet potato and cassava was at the lowest level, while magnesium was very low in taro samples. The bioelements studied cannot pose any serious health risks and the edible tuberous roots widely consumed in Mato Grosso do Sul may represent an important source of essential micronutrients. The data show exclusively the population exposure to these minerals, no assumptions made as to their real absorption or bioavailability. DOI: http://dx.doi.org/10.17807/orbital.v9i3.92

    Structural Modeling of Djenkolic Acid with Sulfur Replaced by Selenium and Tellurium

    No full text
    The comparative structural modeling of djenkolic acid and its derivatives containing selenium and tellurium in chalcogen sites (Ch = Se, Te) has provided detailed information about the bond lengths and bond angles, filling the gap in what we know about the structural characteristics of these aminoacids. The investigation using the molecular mechanics technique with good approximation confirmed the available information on X-ray refinements for the related compounds methionine and selenomethionine, as well as for an estimate made earlier for telluromethionine. It was shown that the Ch-C(3) and Ch-C(4) bond lengths grow in parallel with the increasing anionic radii. Although the distances C-C, C-O, and C-N are very similar, the geometry of conformers is quite different owing to the possibility of rotation about four carbon atoms, hence the remarkable variability observed in dihedral angles. It was shown that the compounds contain a rigid block with two Ch atoms connected through a methylene group. The standard program Gaussian 03 with graphical interface Gaussview 4.1.2 has proved to be satisfactory tool for the structural description of less-common bioactive compositions when direct X-ray results are absent

    O gálio e a patologia óssea Gallium and bone pathology

    No full text
    PROPOSTA: Revisão de trabalhos científicos referentes à incorporação do gálio no tecido ósseo, ao mecanismo da atividade terapêutica desse elemento, bem como a formação, crescimento e solubilidade da hidroxiapatita na presença dos sais de gálio. JUSTIFICATIVA: Diferente de outras drogas que impedem a perda de cálcio, os sais de elemento traço gálio são eficazes em hipercalcemia severa. O gálio (geralmente na forma de nitrato) aumenta a concentração de cálcio e fósforo no osso, influindo nos osteoclastos de maneira direta não tóxica, em doses surpreendentemente baixas. Apesar de que os detalhes do mecanismo de ação do gálio não são bem esclarecidos, está comprovado que esse mecanismo envolve a inserção do gálio na matriz de hidroxiapatita, protegendo-a contra a reabsorção e melhorando as propriedades biomecânicas do sistema esquelético. Este fármaco age também nos componentes celulares do osso, impedindo sua absorção ao diminuir a secreção ácida dos osteoclastos. São necessárias mais publicações sobre o uso do gálio no tratamento de várias doenças onde prevalece esta patologia. CONCLUSÕES: Devido as suas características interessantes e promissoras, o gálio merece ser futuramente avaliado do ponto de vista experimental e clínico, como um agente antiabsortivo em ortopedia, traumatologia e doenças relacionadas com o câncer. Maior conhecimento dos mecanismos envolvidos pode fornecer as idéias para estratégia terapêutica, com o objetivo de diminuir hipercalcemia e perda óssea. Espera-se que novos compostos do gálio sejam desenvolvidos e avaliados clinicamente.PURPOSE: To review the literature concerning the incorporation of gallium into bone tissue, mechanisms of therapeutic activity of this element, as well as the formation, growth and solubility of hydroxiapatite in the presence of gallium salts. JUSTIFICATION: In contrast to other calcium-saving drugs, salts of trace element gallium are effective in severe hypercalcemias. Gallium (most commonly in the form of its nitrate) enhances calcium and phosphorus content of the bone and has direct, noncytotoxic effects on osteoclasts at markedly low doses. Although the details of gallium action on the bone are still uncertain, it is well established that the mechanism involves gallium insertion into the hydroxiapatite matrix protecting it from resorbtion and improving biomechanical properties of the skeletal system. The drug also acts on the cellular components of bone to reduce bone resorbtion by decreasing acid secretion by osteoclasts. More has to be published about the use of gallium in managing a series of clinical conditions in which this pathology is pronounced. CONCLUSIONS: Due to its interesting and promising profile gallium merits further experimental and clinical evaluation as an antiresorbtive agent in orthopaedics, traumatology and cancer-related conditions. Greater knowledge of the mechanisms involved may provide insights for therapeutic strategies aimed at diminishing hypercalcemy and bone loss. New gallium compounds are expected to be developed and tested clinically
    corecore