4,285 research outputs found

    A near-infrared variability campaign of TMR-1: New light on the nature of the candidate protoplanet TMR-1C

    Full text link
    (abridged) We present a near-infrared (NIR) photometric variability study of the candidate protoplanet, TMR-1C, located at a separation of about 10" (~1000 AU) from the Class I protobinary TMR-1AB in the Taurus molecular cloud. Our campaign was conducted between October, 2011, and January, 2012. We were able to obtain 44 epochs of observations in each of the H and Ks filters. Based on the final accuracy of our observations, we do not find any strong evidence of short-term NIR variability at amplitudes of >0.15-0.2 mag for TMR-1C or TMR-1AB. Our present observations, however, have reconfirmed the large-amplitude long-term variations in the NIR emission for TMR-1C, which were earlier observed between 1998 and 2002, and have also shown that no particular correlation exists between the brightness and the color changes. TMR-1C became brighter in the H-band by ~1.8 mag between 1998 and 2002, and then fainter again by ~0.7 mag between 2002 and 2011. In contrast, it has persistently become brighter in the Ks-band in the period between 1998 and 2011. The (H-Ks) color for TMR-1C shows large variations, from a red value of 1.3+/-0.07 and 1.6+/-0.05 mag in 1998 and 2000, to a much bluer color of -0.1+/-0.5 mag in 2002, and then again a red color of 1.1+/-0.08 mag in 2011. The observed variability from 1998 to 2011 suggests that TMR-1C becomes fainter when it gets redder, as expected from variable extinction, while the brightening observed in the Ks-band could be due to physical variations in its inner disk structure. The NIR colors for TMR-1C obtained using the high precision photometry from 1998, 2000, and 2011 observations are similar to the protostars in Taurus, suggesting that it could be a faint dusty Class I source. Our study has also revealed two new variable sources in the vicinity of TMR-1AB, which show long-term variations of ~1-2 mag in the NIR colors between 2002 and 2011.Comment: Accepted in A&

    Ab initio many-body calculations of nucleon scattering on 4He, 7Li, 7Be, 12C and 16O

    Full text link
    We combine a recently developed ab initio many-body approach capable of describing simultaneously both bound and scattering states, the ab initio NCSM/RGM, with an importance truncation scheme for the cluster eigenstate basis and demostrate its applicability to nuclei with mass numbers as high as 17. Using soft similarity renormalization group evolved chiral nucleon-nucleon interactions, we first calculate nucleon-4He phase shifts, cross sections and analyzing power. Next, we investigate nucleon scattering on 7Li, 7Be, 12C and 16O in coupled-channel NCSM/RGM calculations that include low-lying excited states of these nuclei. We check the convergence of phase shifts with the basis size and study A=8, 13, and 17 bound and unbound states. Our calculations predict low-lying resonances in 8Li and 8B that have not been experimentally clearly identified yet. We are able to reproduce reasonably well the structure of the A=13 low lying states. However, we find that A=17 states cannot be described without an improved treatment of 16O one-particle-one-hole excitations and alpha clustering.Comment: 18 pages, 20 figure

    Stability of Fermi Surfaces and K-Theory

    Full text link
    Nonrelativistic Fermi liquids in d+1 dimensions exhibit generalized Fermi surfaces: (d-p)-dimensional submanifolds in the momentum-frequency space supporting gapless excitations. We show that the universality classes of stable Fermi surfaces are classified by K-theory, with the pattern of stability determined by Bott periodicity. The Atiyah-Bott-Shapiro construction implies that the low-energy modes near a Fermi surface exhibit relativistic invariance in the transverse p+1 dimensions. This suggests an intriguing parallel between norelativistic Fermi liquids and D-branes of string theory.Comment: 4 pages, revte

    Evaluation of emmer wheat genetics resources aimed at dietary food production

    Get PDF
    Emmer wheat cultivated by organic farmers is used as a component of some bio (organic) food products. Its positive influence on consumer health is caused by grain composition. In the set of 8 emmer wheat accessions, the main grain components, bread making characteristics and contents of health supporting chemical substances such as total dietary fibre content and its components, content of total polyphenols plus catechin and ferulic acid contents, vitamins of the B group and E plus total content of carotenoids were evaluated by standard methods

    Coherent Control of Photocurrents in Graphene and Carbon Nanotubes

    Full text link
    Coherent one photon (2ω2 \omega) and two photon (ω \omega) electronic excitations are studied for graphene sheets and for carbon nanotubes using a long wavelength theory for the low energy electronic states. For graphene sheets we find that coherent superposition of these excitations produces a polar asymmetry in the momentum space distribution of the excited carriers with an angular dependence which depends on the relative polarization and phases of the incident fields. For semiconducting nanotubes we find a similar effect which depends on the square of the semiconducting gap, and we calculate its frequency dependence. We find that the third order nonlinearity which controls the direction of the photocurrent is robust for semiconducting t ubes and vanishes in the continuum theory for conducting tubes. We calculate corrections to these results arising from higher order crystal field effects on the band structure and briefly discuss some applications of the theory.Comment: 12 pages in RevTex, 6 epsf figure

    Real space finite difference method for conductance calculations

    Get PDF
    We present a general method for calculating coherent electronic transport in quantum wires and tunnel junctions. It is based upon a real space high order finite difference representation of the single particle Hamiltonian and wave functions. Landauer's formula is used to express the conductance as a scattering problem. Dividing space into a scattering region and left and right ideal electrode regions, this problem is solved by wave function matching (WFM) in the boundary zones connecting these regions. The method is tested on a model tunnel junction and applied to sodium atomic wires. In particular, we show that using a high order finite difference approximation of the kinetic energy operator leads to a high accuracy at moderate computational costs.Comment: 13 pages, 10 figure

    Sterically restricted tin phosphines, stabilized by weak intramolecular donor-acceptor interactions

    Get PDF
    Funding: Engineering and Physical Sciences Research Council (EPSRC)Four related sterically restricted pen-substituted acenaphthenes have been prepared containing mixed tin phosphorus moieties in the proximal 5,6-positions (Acenap[SnR3][(PPr2)-Pr-i]; Acenap = acenaphthene-5,6-diyl; R-3 = Ph-3 (1), Ph2Cl (2), Me2Cl (3), Bu2Cl (4)). The degree of intramolecular P-Sn bonding within the series was investigated by X-ray crystallography, solution and solid-state NMR spectroscopy, and density functional theory (DFT/B3LYP/SBKJC/PCM) calculations. All members of the series adopt a conformation such that the phosphorus lone pair is located directly opposite the tin center, promoting an intramolecular donor acceptor P -> Sn type interaction. The extent of covalent bonding between Sn and P is found to be much greater in triorganotin chlorides 2-4 in comparison with the triphenyl derivative 1. Coordination of a highly electronegative chlorine atom naturally increases the Lewis acidity of the tin center, enhancing the Ip(P)-sigma*(Sn-Y) donor acceptor 3c-4e type interaction, as indicated by conspicuously short Sn-P peri distances and significant (1)J(P-31,Sn-119) spin spin coupling constants (SSCCs) in the range 740-754 Hz. Evidence supporting the presence of this interaction was also found in solid-state NMR spectra of some of the compounds which exhibit an indirect spin spin coupling on the same order of magnitude as observed in solution. DFT calculations confirm the increased covalent bonding between P and Sn in 2-4, with notable WBIs of ca. 0.35 obtained, in comparison to 0.1 in 1.PostprintPeer reviewe

    Gluino Condensation in Strongly Coupled Heterotic String Theory

    Get PDF
    Strongly coupled heterotic E8Ă—E8E_8\times E_8 string theory, compactified to four dimensions on a large Calabi-Yau manifold X{\bf X}, may represent a viable candidate for the description of low-energy particle phenomenology. In this regime, heterotic string theory is adequately described by low-energy MM-theory on R4Ă—S1/Z2Ă—X{\bf R}^4\times{\bf S}^1/{\bf Z}_2\times{\bf X}, with the two E8E_8's supported at the two boundaries of the world. In this paper we study the effects of gluino condensation, as a mechanism for supersymmetry breaking in this MM-theory regime. We show that when a gluino condensate forms in MM-theory, the conditions for unbroken supersymmetry can still be satisfied locally in the orbifold dimension S1/Z2{\bf S}^1/{\bf Z}_2. Supersymmetry is then only broken by the global topology of the orbifold dimension, in a mechanism similar to the Casimir effect. This mechanism leads to a natural hierarchy of scales, and elucidates some aspects of heterotic string theory that might be relevant to the stabilization of moduli and the smallness of the cosmological constant.Comment: 22 pages, harvmac, no figure

    Sublingual allergen immunotherapy with a liquid birch pollen product in patients with seasonal allergic rhinoconjunctivitis with or without asthma

    Get PDF
    Background: Sublingual allergen immunotherapy (SLIT) has been demonstrated to be both clinically efficacious and safe. However, in line with the current regulatory guidance from the European Medicines Agency, allergen immunotherapy (AIT) products must demonstrate their efficacy and safety in pivotal phase III trials for registration. Objective: We sought to investigate the efficacy and safety of sublingual high-dose liquid birch pollen extract (40,000 allergy units native [AUN]/mL) in adults with birch pollen allergy. Methods: A randomized, double-blind, placebo-controlled, parallel-group multicenter trial was conducted in 406 adult patients with moderate-to-severe birch pollen-induced allergic rhinoconjunctivitis with or without mild-to-moderate controlled asthma. Treatment was started 3 to 6 months before the birch pollen season and continued during the season in 40 clinical study centers in 5 European countries. For primary end point assessment, the recommended combined symptom and medication score of the European Academy of Allergy and Clinical Immunology was used. Secondary end points included quality-of-life assessments, immunologic parameters, and safety. Results: Primary efficacy results demonstrated a significant (P < .0001) and clinically relevant (32%) reduction in the combined symptom and medication score compared with placebo after 3 to 6 months of SLIT. Significantly better rhinoconjunctivitis quality-of-life scores (P < .0001) and the patient's own overall assessment of his or her health status, including the visual analog scale score (Euro Quality of Life Visual Analogue Scale; P = .0025), were also demonstrated. In total, a good safety profile of SLIT was observed. Conclusion: This study confirmed both the clinical efficacy and safety of a sublingual liquid birch pollen extract in adults with birch pollen allergy in a pivotal phase III trial (EudraCT: 2013-005550-30; ClinicalTrials. gov: NCT02231307)

    Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    Full text link
    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven with a constant rate. The time evolution of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the performed work during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility.Comment: 21 pages, 7 figure
    • …
    corecore