4 research outputs found

    MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response

    Full text link
    [EN] A Model Predictive Control (MPC) strategy based on the Evolutionary Algorithms (EA) is proposed for the optimal dispatch of renewable generation units and demand response in a grid-tied hybrid system. The generating system is based on the experimental setup installed in a Distributed Energy Resources Laboratory (LabDER), which includes an AC micro-grid with small scale PV/Wind/Biomass systems. Energy storage is by lead-acid batteries and an H2 system (electrolyzer, H2 cylinders and Fuel Cell). The energy demand is residential in nature, consisting of a base load plus others that can be disconnected or moved to other times of the day within a demand response program. Based on the experimental data from each of the LabDER renewable generation and storage systems, a micro-grid operating model was developed in MATLAB(C) to simulate energy flows and their interaction with the grid. The proposed optimization algorithm seeks the minimum hourly cost of the energy consumed by the demand and the maximum use of renewable resources, using the minimum computational resources. The simulation results of the experimental micro-grid are given with seasonal data and the benefits of using the algorithm are pointed out.Acevedo-Arenas, CY.; Correcher Salvador, A.; Sánchez-Diaz, C.; Ariza-Chacón, HE.; Alfonso-Solar, D.; Vargas-Salgado, C.; Petit-Suarez, JF. (2019). MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Conversion and Management. 186:241-257. https://doi.org/10.1016/j.enconman.2019.02.044S24125718

    Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial

    No full text
    International audienc

    Sarilumab in adults hospitalised with moderate-to-severe COVID-19 pneumonia (CORIMUNO-SARI-1): An open-label randomised controlled trial

    No full text
    International audienc

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore