100 research outputs found

    Neue Methoden zur Bestimmung von NMR-Projektionsrestraints : Bestimmung der Struktur und Dynamik von nativen und denaturierten Proteinen

    Get PDF
    In der vorliegenden Arbeit wurden neue Methoden für die hochauflösende NMR Spektroskopie entwickelt, um damit native und denaturierte Proteine charakterisieren zu können. Neue Mess- und Anwendungsmethoden für dipolare Kopplungen bilden den Schwerpunkt der Doktorarbeit. Durch die Verwendung von flüssigkristallinen Medien ist es in NMR in Lösung möglich geworden dipolare Kopplungen zu bestimmen. Durch die Projektionen der einzelnen so bestimmten Vektoren auf andere Vektoren im Protein, welche beliebig weit entfernt sein können, kann weitreichende Orientierungsinformationen für die Strukturrechnung von Biomakromolekülen genutzt werden. Dies ist an den Beispielen Ubiquitin, Triggerfaktor und Raffinose in der Arbeit dargestellt. Durch diese Orientierungsinformation kann man auch Teile von Proteinen, wie zum Beispiel Domänen, gegeneinander ausrichten oder die relative Orientierung von Sekundärstrukturelementen nutzen um eine 3D Homologiesuche durchzuführen. Auch dies ist in der Arbeit beschrieben. Die neuen Messmethoden erlauben erstmals die Bestimmung von 1H-1H dipolaren Kopplungen mit Größe und Vorzeichen (JHH-NOESY) und von allen drei dipolaren Kopplungen in einer Seitenkettenmethylgruppe (SPITZE-HSQC). Ein weiterer wichtiger Punkt war die Extraktion dynamischer Parameter aus dipolaren Kopplungen. Der Vektor, der die wechselwirkenden Dipole verbindet, wird von der Dynamik des Proteins beeinflusst. Dadurch ist eine Analyse der Dynamik auf einer Zeitskala bis ca. 10ms möglich (bisher nur bis in den Bereich von ns). Besonders µs Dynamik, welche vorher nicht mittels NMR Methoden sichtbar, kann so dargestellt werden. Aus den dipolaren Kopplungen, welche in 11 verschiedenen Orientierungsmedien gemessen wurden, konnten modellfreie dipolare Ordnungsparameter extrahiert werden. Erstmals konnte zwischen axialsymmetrischen und anisotropen Bewegungen der NH Vektoren unterschieden werden. Unsere experimentellen Daten zeigen, dass Ubiquitin auf einer Zeitskala oberhalb der Korrelationszeit ähnlich viel Bewegung zeigt wie unterhalb der Korrelationszeit. Der mittlere Ordnungsparameter sinkt von 0.8 für Bewegungen bis zur Korrelationszeit auf 0.6 für alle Bewegungszeiten. Auch sieht man, dass viele Bewegungen bis zu 60% Anisotropie beinhalten. TOCSY-Sequenzen sind wichtige Bausteine für Moleküle jeder Größenordnung. Hierfür wurden neue adiabatische TOCSY Sequenzen entwickelt, welche TOCSY Spektroskopie bei allen Magnetfeldern mit höherer Intensität erlauben. Wichtig ist auch noch die viel größere Robustheit gegen B1-Inhomogenitäten und Pulsmisskalibrierung. Dipolare TOCSY Sequenzen (MOCCA) erlauben besseren Transfer mittels den zuvor schon erwähnten dipolaren Kopplungen. Durch die Analyse denaturierter Proteine wollte man ein besseres Verständnis dieses Zustandes erzielen. Hierfür wurden Kopplungskonstanten, kreuzkorrelierte und autokorrelierte Raten und chemische Verschiebungen gemessen und mit einem Modell, dem sogenannten Random Coil Modell verglichen. Mit Hilfe dieser experimentellen Daten sieht man erstmals direkt, dass Proteine im denaturiertem Zustand den Winkel zwischen 60° ( -Helix) und ­120° ( -Faltblatt) absuchen

    Solvolysis of the Tumor-Inhibiting Ru(III)-Complex trans-Tetrachlorobis(Indazole)Ruthenate(III)

    Get PDF
    The ruthenium(III) complex Hlnd trans-[RuCl4,(ind)2], with two trans-standing indazole (ind) ligands bound to ruthenium via nitrogen, shows remarkable activity in different tumor models in vitro and in vivo. The solvolysis of the complex trans-[RuCl4,(ind)2]- has been investigated by means of spectroscopic techniques (UV/vis, NMR)in different solvents. We investigated the indazolium as well as the sodium salt, the latter showing improved solubility in water. In aqueous acetonitrile and ethanol the solvolysis results in one main solvento complex. The hydrolysis of the complex is more complicated and depends on the pH of the solution as well as on the buffer system

    Structural signature of the MYPT1-PP1 interaction

    Get PDF
    Muscle relaxation is triggered by the dephosphorylation of Ser19 in the myosin regulatory light chain. This reaction is catalyzed by the holoenzyme myosin phosphatase (MP), which includes the catalytic subunit protein phosphatase 1 (PP1) and the regulatory targeting subunit (MYPT). MYPT1 (myosin phosphatase targeting subunit 1) is responsible for both targeting the holoenzyme to subcellular compartments in the muscle and directing PP1 specificity towards myosin. In order to understand the molecular events leading to the MYPT1:PP1 holoenzyme formation, we used NMR spectroscopy to determine the structural and dynamic characteristics of unbound MYPT1. This allowed the conformations of MYPT1 in the free, unbound state to be directly compared to the PP1-bound state. Our results show that MYPT1(1-98) behaves like a two-domain protein in solution. The first 40 residues of MYPT1(1-98), the disordered region, are intrinsically disordered and highly dynamic, whereas residues 41–98, the folded ankyrin-repeat region, are well-structured and rigid. Furthermore, the integrated use of NMR and biophysical data enabled us to calculate an ensemble model for MYPT1(1-98). The most prominent structural feature of the MYPT1(1-98) ensemble is a 25% populated transient α-helix in the disordered region of MYPT1(1-98). This α-helix becomes fully populated when bound to PP1 and, as we show, likely plays a central role in the formation of the MYPT1:PP1 holoenzyme complex. Finally, this combined analysis shows that the structural and dynamic behaviors exhibited by MYPT1 for PP1 are distinct from those of any other previously analyzed PP1 regulatory protein. Collectively, these data enable us to present a new model of the molecular events that drive MYPT1:PP1 holoenzyme formation and demonstrate that there are structural differences in unbound PP1 regulators that have not been previously observed. Thus this work adds significant insights to the currently limited data for molecular structures and dynamics of PP1 regulators

    A dynamic charge-charge interaction modulates PP2A:B56 substrate recruitment.

    Get PDF
    The recruitment of substrates by the ser/thr protein phosphatase 2A (PP2A) is poorly understood, limiting our understanding of PP2A-regulated signaling. Recently, the first PP2A:B56 consensus binding motif, LxxIxE, was identified. However, most validated LxxIxE motifs bind PP2A:B56 with micromolar affinities, suggesting that additional motifs exist to enhance PP2A:B56 binding. Here, we report the requirement of a positively charged motif in a subset of PP2A:B56 interactors, including KIF4A, to facilitate B56 binding via dynamic, electrostatic interactions. Using molecular and cellular experiments, we show that a conserved, negatively charged groove on B56 mediates dynamic binding. We also discovered that this positively charged motif, in addition to facilitating KIF4A dephosphorylation, is essential for condensin I binding, a function distinct and exclusive from PP2A-B56 binding. Together, these results reveal how dynamic, charge-charge interactions fine-tune the interactions mediated by specific motifs, providing a new framework for understanding how PP2A regulation drives cellular signaling

    A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2α.

    Get PDF
    The integrated stress response (ISR) is regulated by kinases that phosphorylate the α subunit of translation initiation factor 2 and phosphatases that dephosphorylate it. Genetic and biochemical observations indicate that the eIF2αP-directed holophosphatase, a therapeutic target in diseases of protein misfolding, is comprised of a regulatory subunit, PPP1R15, and a catalytic subunit, protein phosphatase 1 (PP1). In mammals, there are two isoforms of the regulatory subunit, PPP1R15A and PPP1R15B, with overlapping roles in the essential function of eIF2αP dephosphorylation. However, conflicting reports have appeared regarding the requirement for an additional co-factor, G-actin, in enabling substrate-specific dephosphorylation by PPP1R15-containing PP1 holoenzymes. An additional concern relates to the sensitivity of the holoenzyme to the [(o-chlorobenzylidene)amino]guanidines Sephin1 or guanabenz, putative small-molecule proteostasis modulators. It has been suggested that the source and method of purification of the PP1 catalytic subunit and the presence or absence of an N-terminal repeat-containing region in the PPP1R15A regulatory subunit might influence the requirement for G-actin and sensitivity of the holoenzyme to inhibitors. We found that eIF2αP dephosphorylation by PP1 was moderately stimulated by repeat-containing PPP1R15A in an unphysiological low ionic strength buffer, whereas stimulation imparted by the co-presence of PPP1R15A and G-actin was observed under a broad range of conditions, low and physiological ionic strength, regardless of whether the PPP1R15A regulatory subunit had or lacked the N-terminal repeat-containing region and whether it was paired with native PP1 purified from rabbit muscle or recombinant PP1 purified from bacteria. Furthermore, none of the PPP1R15A-containing holophosphatases tested were inhibited by Sephin1 or guanabenz.Supported by a Wellcome Trust Principal Research Fellowship to D.R. (Wellcome 200848/Z/16/Z) and a Wellcome Trust Strategic Award to the Cambridge Institute for Medical Research (Wellcome 100140). M.B. was supported by a Flemish Concerted Research Action (GOA15/016). W.P. was supported by National Institute of Health R01NS091336 and the American Diabetes Association Pathway to Stop Diabetes Grant 1-14-ACN-31. Z.C. is a PhD fellow of the Fund for Scientific Research - Flanders

    MAP Kinase-Mediated Activation of RSK1 and MK2 Substrate Kinases

    Get PDF
    Mitogen-activated protein kinases (MAPKs) control essential eukaryotic signaling pathways. While much has been learned about MAPK activation, much less is known about substrate recruitment and specificity. MAPK substrates may be other kinases that are crucial to promote a further diversification of the signaling outcomes. Here, we used a variety of molecular and cellular tools to investigate the recruitment of two substrate kinases, RSK1 and MK2, to three MAPKs (ERK2, p38α, and ERK5). Unexpectedly, we identified that kinase heterodimers form structurally and functionally distinct complexes depending on the activation state of the MAPK. These may be incompatible with downstream signaling, but naturally they may also form structures that are compatible with the phosphorylation of the downstream kinase at the activation loop, or alternatively at other allosteric sites. Furthermore, we show that small-molecule inhibitors may affect the quaternary arrangement of kinase heterodimers and thus influence downstream signaling in a specific manner

    Three Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique Properties

    Get PDF
    One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021), which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA) pair. MqsR adopts an α/β fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy). Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state

    Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators

    Get PDF
    Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three non-homologous, intrinsically disordered proteins: I-2, spinophilin and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, pre-formed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex
    • …
    corecore