272 research outputs found

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes

    Ein neuer Ansatz für die Trockenseparierung von Mikroaggregaten mit unterschiedlicher Textur zur Messung der mechanischen Belastbarkeit und 3D-Porenstruktur

    Get PDF
    Die Bodenstruktur als Ausdruck der räumlichen Anordnung mineralischer und organischer Bodenbestandteile ist eine zentrale Charakteristik des Bodens. Sie steuert viele wichtige biologische, physikalische und geochemische Prozesse, wie die Rolle des Bodens als Kohlenstoffspeicher oder die Ausbildung bzw. Verteilung von Habitaten für Mikroorganismen. Die Bodenstruktur, deren einfachste Einheit die Aggregate bilden, befindet sich als labile Bodeneigenschaft in einem Zustand ständiger Veränderung. Die Eigenschaften der Aggregate werden durch viele Einflussfaktoren wie Textur, Alter, Quellung und Schrumpfung, sowie die biologische Aktivität gesteuert. Eines der Hauptprobleme bei der Untersuchung der Eigenschaften von Mikroaggregaten im Boden ist deren Separierung. Viele Separierungs-Methoden üben Spannungszustände aus, die die realen Bedingungen im Boden nur sehr bedingt abbilden. So werden z. B. bei Nasssiebungsverfahren hydraulische Spannungen erzeugt, die unter natürlichen Bedingungen nicht auftreten. Hierin liegt ein Risiko, dass Artefakte in den gewonnenen Aggregatfraktionen entstehen (z. B. durch Reaggregierung bei anschließender Trocknung) und die weitere Analyse von Eigenschaften dieser Aggregatfraktionen, bzw. deren Interpretation beeinflussen. Übergeordnetes Ziel unserer Untersuchungen ist die Erforschung der Genese von Mikroaggregaten und deren (Poren‑)Eigenschaften in Abhängigkeit von Texturunterschieden, sowie des Zusammenhangs von mikroskaligen Deformationsprozessen auf die Entwicklung der Bodenstruktur. Hierfür haben wir mit einem Verfahren der Trockenseparierung in drei Aggregatgrößen-Unterklassen (250-53, 53-20 und <20 µm) eine zuverlässige Methode zur Isolierung einzelner Mikroaggregate entwickelt, welche die Struktur der gewonnenen Aggregate selbst nicht beeinflusst. In einem nächsten Schritt wird die mechanische Belastbarkeit von Mikroaggregaten aus einer Toposequenz (mit unterschiedlichen Tongehalten) an einem Lastrahmen hochauflösend getestet, um die Hypothese zu überprüfen, dass die Stabilität mit abnehmender struktureller Entropie (d. h. zunehmendem Grad an Strukturierung) zunimmt. Des Weiteren wird die Geometrie des Porennetzwerkes der Mikroaggregate mit unterschiedlichen Tongehalten mittels hochauflösender Computertomographie untersucht, um diese später mit gemessenen Gas- und Wasserflüssen in Verbindung bringen zu können

    Beyond Spheroids and Discs: Classifications of CANDELS Galaxy Structure at 1.4 < z < 2 via Principal Component Analysis

    Get PDF
    Important but rare and subtle processes driving galaxy morphology and star-formation may be missed by traditional spiral, elliptical, irregular or S\'ersic bulge/disk classifications. To overcome this limitation, we use a principal component analysis of non-parametric morphological indicators (concentration, asymmetry, Gini coefficient, M20M_{20}, multi-mode, intensity and deviation) measured at rest-frame BB-band (corresponding to HST/WFC3 F125W at 1.4 1010M⊙10^{10} M_{\odot}) galaxy morphologies. Principal component analysis (PCA) quantifies the correlations between these morphological indicators and determines the relative importance of each. The first three principal components (PCs) capture ∼\sim75 per cent of the variance inherent to our sample. We interpret the first principal component (PC) as bulge strength, the second PC as dominated by concentration and the third PC as dominated by asymmetry. Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, as as good as other structural indicators (S\'ersic-n or compactness). We divide the PCA results into groups using an agglomerative hierarchical clustering method. Unlike S\'ersic, this classification scheme separates compact galaxies from larger, smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies from star-forming bulge-dominated asymmetric galaxies. Distinguishing between these galaxy structural types in a quantitative manner is an important step towards understanding the connections between morphology, galaxy assembly and star-formation.Comment: 31 pages, 24 figures, accepted for publication in MNRA

    Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z≳\gtrsim2: High velocity dispersions in progenitors of compact quiescent galaxies

    Get PDF
    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2≤z≤2.52\leq z \leq2.5 with star formation rates of SFR∼\sim100M⊙_{\odot} y−1^{-1} and masses of log(M/M⊙_{\odot})∼10.8\sim10.8. Their high integrated gas velocity dispersions of σint\sigma_{\rm{int}}=230−30+40^{+40}_{-30} km s−1^{-1}, as measured from emission lines of Hα_{\alpha} and [OIII], and the resultant M⋆−σint_{\star}-\sigma_{\rm{int}} relation and M⋆_{\star}−-Mdyn_{\rm{dyn}} all match well to those of compact quiescent galaxies at z∼2z\sim2, as measured from stellar absorption lines. Since log(M⋆_{\star}/Mdyn_{\rm{dyn}})=−0.06±0.2=-0.06\pm0.2 dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter (<<13−13+17^{+17}_{-13}\%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼\sim300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z≳2z\gtrsim2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z∼2z\sim2.Comment: 12 pages, 7 figures, submitted to Ap

    An interdisciplinary approach towards improved understanding of soil deformation during compaction

    Get PDF
    International audienceSoil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often adopted from conventional soil mechanics (e.g. foundation engineering). However, in contrast with standard geotechnical applications, undesired stresses applied by agricultural tyres/tracks are highly dynamic and last for very short times. Moreover, arable soils are typically unsaturated and contain important secondary structures (e.g. aggregates), factors important for affecting their soil mechanical behaviour. Mechanical processes in porous media are not only of concern in soil mechanics, but also in other fields including geophysics and granular material science. Despite similarity of basic mechanical processes, theoretical frameworks often differ and reflect disciplinary focus. We review concepts from different but complementary fields concerned with porous media mechanics and highlight opportunities for synergistic advances in understanding deformation and compaction of arable soils. We highlight the important role of technological advances in non-destructive measurement methods at pore (X-ray tomography) and soil profile (seismic) scales that not only offer new insights into soil architecture and enable visualization of soil deformation, but are becoming instrumental in the development and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth
    • …
    corecore