48 research outputs found

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Characterization and Acceptor Preference of a Soluble Meningococcal Group C Polysialyltransferase▿ †

    No full text
    Vaccines against Neisseria meningitidis group C are based on its α-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation α-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the α-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of α-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight α-2,9-polysialic acid in a nonprocessive fashion when initiated with an α-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the α-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody

    Interaction of Neisseria meningitidis Group X N-acetylglucosamine-1-phosphotransferase with its donor substrate

    No full text
    Abstract Neisseria meningitidis Group X is an emerging cause of bacterial meningitis in Sub-Saharan Africa. The capsular polysaccharide of Group X is a homopolymer of N-acetylglucosamine α(1–4) phosphate and is a vaccine target for prevention of disease associated with this meningococcal serogroup. We have demonstrated previously that the formation of the polymer is catalyzed by a phosphotransferase which transfers N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the 4-hydroxyl of the N-acetylglucosamine on the nonreducing end of the growing chain. In this study, we use substrate analogs of UDP-GlcNAc to define the enzyme/donor substrate interactions critical for catalysis. Our kinetic analysis of the phosphotransferase reaction is consistent with a sequential mechanism of substrate addition and product release. The use of novel uracil modified analogs designed by Wagner et al. enabled us to assess whether the CsxA-catalyzed reaction is consistent with a donor dependent conformational change. As expected with this model for glycosyltransferases, UDP-GlcNAc analogs with bulky uracil modifications are not substrates but are inhibitors. An analog with a smaller iodo uracil substitution is a substrate and a less potent inhibitor. Moreover, our survey of analogs with modifications on the N-acetylglucosamine residue of the sugar nucleotide donor highlights the importance of substituents at C2 and C4 of the sugar residue. The hydroxyl group at C4 and the structure of the acyl group at C2 are very important for specificity and substrate interactions during the polymerization reaction. While most analogs modified at C2 were inhibitors, acetamido analogs were also substrates suggesting the importance of the carbonyl group
    corecore