670 research outputs found

    EMASS (trademark): An expandable solution for NASA space data storage needs

    Get PDF
    The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2 x 10(exp 12) Bytes). As the scientific community makes use of this data, their work will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. The expendable architecture of the E-Systems Modular Automated Storage System (EMASS(TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century is described

    EMASS (tm): An expandable solution for NASA space data storage needs

    Get PDF
    The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2(10)(exp 12) Bytes). As the scientific community makes use of this data their work product will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. This paper describes the expandable architecture of the E-Systems Modular Automated Storage System (EMASS (TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century

    Evaluation of sample collection and storage protocols for surface eDNA surveys of an invasive terrestrial insect

    Get PDF
    Environmental DNA surveys have revolutionized monitoring of rare or cryptic species and species inhabiting areas where conventional sampling is difficult or dangerous. Recent advancements within terrestrial environments include the capture of eDNA deposited by animals on surfaces such as tree bark and foliage, hereafter “surface eDNA.” Notably, a technique which uses commercial paint rollers to aggregate surface eDNA has been deployed with success to detect the presence of forest insect pests providing a potentially powerful new management tool. However, before widespread adoption is feasible, the efficiency and logistics of roller sample collection and study design, especially relative to realistic survey conditions, must be evaluated. We compared the performance of two DNA preservation treatments—cold and ethanol—on their ability to reduce the loss of captured eDNA on rollers over time. Additionally, we evaluated how the detection probability of our target species, the spotted lanternfly (Lycorma delicatula), varied with sampling effort (time spent rolling per sample) and the initial quantity of eDNA present. Finally, we evaluated how the number of trees sampled per roller influenced the final concentrations of lanternfly eDNA remaining on the roller. We found storing rollers with ethanol or cold temperatures resulted in 3–10-fold greater concentrations of experimentally controlled eDNA relative to no treatment after 24 h. Detection probability declined as the amount of lanternfly eDNA decreased, but did not change in response to sampling effort over sample time (10–80 s/tree). Finally, recovered lanternfly eDNA decreased as more trees were sampled by a single roller—a 91% reduction after 7 trees—potentially due to captured DNA being transferred back from the roller onto the bark. Our results provide improved guidance for deploying roller surface eDNA methods for spotted lanternfly surveys, and for invasive insect pest surveillance and monitoring programs generally

    Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis Model

    Get PDF
    poster abstractDigital whole slide imaging is the technique of digitizing a microscope slide at the highest resolution to produce a “digital virtual microscope slide”. This digital image can be viewed in three or four fields, from low to high power, which can be commonly used to evaluate the tissue. Many of these systems have whole slide software image analysis capability. The goal of this study was to determine if the Aperio positive pixel algorithm (image analysis) could effectively quantitate metastatic mouse lung tumors in a lung section using a H&E stain. Lung sections from a mouse lung metastasis model of 8 mice per group were evaluated: control, 50mg/kg, and 75mg/kg carboplatin. H&E and Ki67 immunostain slides were scanned using the Aperio whole slide scanning system (Scanscope CS). A single field of view from each slide representing a whole lung lobe with multiple lung metastases was selected for image analysis. The standard positive pixel algorithm was altered to read the H&E slides. Various histology slides were used to validate the altered algorithm. The immunostain (Ki67) was generated using the standard positive pixel algorithm analysis. The Aperio automated positive pixel count for a Ki67 immunostain was consistent with the H&E image analysis. The values decreased with a dose dependent treatment (control vs. 50mg/kg and 75mg/kg carboplatin) and were (H&E) 37%, 28%, and 22%, and (Ki67) 9%, 5%, and 3%. The analysis had decreasing values for both the H&E and Ki67 analysis on a dose dependent drug treatment. The metastases decreased in both treatment groups compared to controls with both the H&E and Ki67 analyses. The Aperio Image Analysis positive pixel algorithm allows large areas of the lung tissue section to be examined and not just a single 25x or 40x field like many common image analyses systems

    Misplaced Cervical Screws Requiring Reoperation.

    Get PDF
    STUDY DESIGN: A multicenter, retrospective case series. OBJECTIVE: In the past several years, screw fixation of the cervical spine has become commonplace. For the most part, this is a safe, low-risk procedure. While rare, screw backout or misplaced screws can lead to morbidity and increased costs. We report our experiences with this uncommon complication. METHODS: A multicenter, retrospective case series was undertaken at 23 institutions in the United States. Patients were included who underwent cervical spine surgery from January 1, 2005, to December 31, 2011, and had misplacement of screws requiring reoperation. Institutional review board approval was obtained at all participating institutions, and detailed records were sent to a central data center. RESULTS: A total of 12 903 patients met the inclusion criteria and were analyzed. There were 11 instances of screw backout requiring reoperation, for an incidence of 0.085%. There were 7 posterior procedures. Importantly, there were no changes in the health-related quality-of-life metrics due to this complication. There were no new neurologic deficits; a patient most often presented with pain, and misplacement was diagnosed on plain X-ray or computed tomography scan. The most common location for screw backout was C6 (36%). CONCLUSIONS: This study represents the largest series to tabulate the incidence of misplacement of screws following cervical spine surgery, which led to revision procedures. The data suggest this is a rare event, despite the widespread use of cervical fixation. Patients suffering this complication can require revision, but do not usually suffer neurologic sequelae. These patients have increased cost of care. Meticulous technique and thorough knowledge of the relevant anatomy are the best means of preventing this complication

    Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation

    Get PDF
    A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multidimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go–related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors
    • …
    corecore