813 research outputs found

    TMEM258 Is a Component of the Oligosaccharyltransferase Complex Controlling ER Stress and Intestinal Inflammation

    Get PDF
    Summary - Significant insights into disease pathogenesis have been gleaned from population-level genetic studies; however, many loci associated with complex genetic disease contain numerous genes, and phenotypic associations cannot be assigned unequivocally. In particular, a gene-dense locus on chromosome 11 (61.5–61.65 Mb) has been associated with inflammatory bowel disease, rheumatoid arthritis, and coronary artery disease. Here, we identify TMEM258 within this locus as a central regulator of intestinal inflammation. Strikingly, Tmem258 haploinsufficient mice exhibit severe intestinal inflammation in a model of colitis. At the mechanistic level, we demonstrate that TMEM258 is a required component of the oligosaccharyltransferase complex and is essential for N-linked protein glycosylation. Consequently, homozygous deficiency of Tmem258 in colonic organoids results in unresolved endoplasmic reticulum (ER) stress culminating in apoptosis. Collectively, our results demonstrate that TMEM258 is a central mediator of ER quality control and intestinal homeostasis.Leona M. and Harry B. Helmsley Charitable Trust (2014PG-IBD016)Crohn's and Colitis Foundation of AmericaNational Institutes of Health (U.S.) (grant DK043351)National Institutes of Health (U.S.) (grant DK097485

    Simulation of gait asymmetry and energy transfer efficiency between unilateral and bilateral amputees

    Get PDF
    Efficient walking or running requires symmetrical gait. Gait symmetry is one of the key factors in efficient human dynamics, kinematics and kinetics. The desire of individuals with a lower-limb amputation to participate in sports has resulted in the development of energy-storing and-returning (ESR) feet. This paper analyses a case study to show the effect of symmetry and asymmetry as well as energy transfer efficiency during periodic jumping between simulated bilateral and unilateral runners. A custom gait analysis system is developed as part of this project to track the motion of the body of a physically active subject during a set of predefined motions. Stance and aerial times are accurately measured using a high speed camera. Gait frequency, the level of symmetry and the non-uniform displacement between left and right foot and their effects on the position of the Centre of Mass (CM) were used as criteria to calculate both peak energies and transformation efficiency. Gait asymmetry and discrepancy of energy transfer efficiency between the intact foot and the ESR are observed. It is concluded that unilateral runners require excessive effort to compensate for lack of symmetry as well as asymmetry in energy transfer, causing fatigue which could be a reason why bilateral amputee runners using ESR feet have a superior advantage over unilateral amputees

    Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum - evidence from a mathematical model

    Get PDF
    The hetero-dimeric CoA-transferase CtfA/B is believed to be crucial for the metabolic transition from acidogenesis to solventogenesis in Clostridium acetobutylicum as part of the industrial-relevant acetone-butanol-ethanol (ABE) fermentation. Here, the enzyme is assumed to mediate re-assimilation of acetate and butyrate during a pH-induced metabolic shift and to faciliate the first step of acetone formation from acetoacetyl-CoA. However, recent investigations using phosphate-limited continuous cultures have questioned this common dogma. To address the emerging experimental discrepancies, we investigated the mutant strain Cac-ctfA398s::CT using chemostat cultures. As a consequence of this mutation, the cells are unable to express functional ctfA and are thus lacking CoA-transferase activity. A mathematical model of the pH-induced metabolic shift, which was recently developed for the wild type, is used to analyse the observed behaviour of the mutant strain with a focus on re-assimilation activities for the two produced acids. Our theoretical analysis reveals that the ctfA mutant still re-assimilates butyrate, but not acetate. Based upon this finding, we conclude that C. acetobutylicum possesses a CoA-tranferase-independent butyrate uptake mechanism that is activated by decreasing pH levels. Furthermore, we observe that butanol formation is not inhibited under our experimental conditions, as suggested by previous batch culture experiments. In concordance with recent batch experiments, acetone formation is abolished in chemostat cultures using the ctfa mutant

    Strengthening field-based training in low and middle-income countries to build public health capacity: Lessons from Australia's Master of Applied Epidemiology program

    Get PDF
    BACKGROUND: The International Health Regulations (2005) and the emergence and global spread of infectious diseases have triggered a re-assessment of how rich countries should support capacity development for communicable disease control in low and medium income countries (LMIC). In LMIC, three types of public health training have been tried: the university-based model; streamed training for specialised workers; and field-based programs. The first has low rates of production and teaching may not always be based on the needs and priorities of the host country. The second model is efficient, but does not accord the workers sufficient status to enable them to impact on policy. The third has the most potential as a capacity development measure for LMIC, but in practice faces challenges which may limit its ability to promote capacity development. DISCUSSION: We describe Australia's first Master of Applied Epidemiology (MAE) model (established in 1991), which uses field-based training to strengthen the control of communicable diseases. A central attribute of this model is the way it partners and complements health department initiatives to enhance workforce skills, health system performance and the evidence-base for policies, programs and practice. SUMMARY: The MAE experience throws light on ways Australia could collaborate in regional capacity development initiatives. Key needs are a shared vision for a regional approach to integrate training with initiatives that strengthen service and research, and the pooling of human, financial and technical resources. We focus on communicable diseases, but our findings and recommendations are generalisable to other areas of public health

    Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses

    Get PDF
    BACKGROUND: Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. CONCLUSIONS/SIGNIFICANCE: Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine

    TXNIP Regulates Peripheral Glucose Metabolism in Humans

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS: We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic β-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore