1,159 research outputs found

    The Feasibility of Reclaiming Shell Material from Investment Casting

    Get PDF
    This report examines the feasibility of investment shell component reclamation. Shell material components and their compositions are investigated with an industry survey, a study of the available literature, and analysis of specimen shell materials. physical properties and factors related to the reclamation and reuse of shell materials are described. Well known mineral processing methods are capable of producing concentrates of the various shell components. The theory and techniques of some applicable processes are discussed to assist with the development of reclamation operations. The recommended methods are; comminution by roll crushing, component concentration by screening, gravity settling or heavy medium separation. Aluminosilicate stucco (a major component of many investment shells) can be recovered in a form suitable for reuse as backup stucco. Zircon (a minor component in many shell compositions) -can be concentrated in an impure form, and subsequent caustic liberation treatments can remove the intermixed silica phases. Reuse of such zircon in investment casting may be possible but will require careful qualification testing. Fused and crystalline silica (major components of most shell compositions) are not reusable for investment casting. The feasibility of reclamation will be influenced by individual foundry choices of materials, composition and shell practice.HWRIC Project No. RRT-10NTIS PB92-16219

    DEFY: A Deniable File System for Flash Memory

    Get PDF
    While solutions for file system encryption can prevent an adversary from determining the contents of files, in situations where a user wishes to hide even the existence of data, encryption alone is not enough. Indeed, encryption may draw attention to those files, as they most likely contain information the user wishes to keep secret, and coercion can be a very strong motivator for the owner of an encrypted file system to surrender their secret key. Herein we present DEFY, a deniable file system designed to work exclusively with solid-state drives, particularly those found in mobile devices. Solid-state drives have unique properties that render previous deniable file system designs impractical or insecure. Further, DEFY provides features not offered by any single prior work, including: support for multiple layers of deniability, authenticated encryption, and an ability to quickly and securely delete data from the device. We have implemented a prototype based on the YAFFS and WhisperYaffs file systems. An evaluation shows DEFY performs comparatively with WhisperYaffs

    ROV-based Tracking of a Shallow Water Nocturnal Squid

    Get PDF
    This paper describes the use of a Remotely Operated Vehicle (ROV) equipped with a monocular vision system to find and track the squid Euprymna scolopes, so that motion behaviors of the squid could be characterized through the use of off-line image processing and state estimation. The ROV was deployed for several nights at several nearshore locations off Oahu, resulting in 10 hours of squid footage. Using blob-tracking image processing techniques and a Particle Filter state estimator, the squid can be detected and tracked. The position, velocity, and acceleration of the squid relative to the stationary ROV can be determined. Experiment results from tracking a simulated squid at known positions in a swimming pool and tracking of live squid in the ocean validate the performance of the tracking system. Results show the 3-D trajectory of the squid in a test feeding video. To the best of the authors’ knowledge, this is the first observatio

    Effects of Trophic Level and Metamorphosis on Discrimination of Hydrogen Isotopes in a Plant-Herbivore System

    Get PDF
    The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = −131, −88, −48, and −2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ∼45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult

    Carboxy-Terminal Conversion of Profibrillin to Fibrillin at a Basic Site by PACE/Furin-Like Activity Required for Incorporation in the Matrix

    Get PDF
    Fibrillin-1, the main component of 10-12 nm microfibrils of the extracellular matrix, is synthesized as profibrillin and proteolytically processed to fibrillin. The putative cleavage site has been mapped to the carboxy-terminal domain of profibrillin-1, between amino acids arginine 2731 and serine 2732, by a spontaneous mutation in this recognition site that prevents profibrillin conversion. This site contains a basic amino acid recognition sequence (R-G-R-K-R-R) for proprotein convertases of the furin/PACE family. In this study, we use a mini-profibrillin protein to confirm the cleavage in the carboxy-terminal domain by both fibroblasts and recombinantly expressed furin/PACE, PACE4, PC1/3 and PC2. Site-directed mutagenesis of amino acids in the consensus recognition motif prevented conversion, thereby identifying the scissile bond and characterizing the basic amino acids required for cleavage. Using a PACE/furin inhibitor, we show that wild-type profibrillin is not incorporated into the extracellular matrix until it is converted to fibrillin. Therefore, profibrillin-1 is the first extracellular matrix protein to be shown to be a substrate for subtilisin-like proteases, and the conversion of profibrillin to fibrillin controls microfibrillogenesis through exclusion of uncleaved profibrillin

    COX-2 suppresses tissue factor expression via endocannabinoid-directed PPARδ activation

    Get PDF
    Although cyclooxygenase (COX)-2 inhibitors (coxibs) are effective in controlling inflammation, pain, and tumorigenesis, their use is limited by the recent revelation of increased adverse cardiovascular events. The mechanistic basis of this side effect is not well understood. We show that the metabolism of endocannabinoids by the endothelial cell COX-2 coupled to the prostacyclin (PGI2) synthase (PGIS) activates the nuclear receptor peroxisomal proliferator–activated receptor (PPAR) δ, which negatively regulates the expression of tissue factor (TF), the primary initiator of blood coagulation. Coxibs suppress PPARδ activity and induce TF expression in vascular endothelium and elevate circulating TF activity in vivo. Importantly, PPARδ agonists suppress coxib-induced TF expression and decrease circulating TF activity. We provide evidence that COX-2–dependent attenuation of TF expression is abrogated by coxibs, which may explain the prothrombotic side-effects for this class of drugs. Furthermore, PPARδ agonists may be used therapeutically to suppress coxib-induced cardiovascular side effects

    Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Diabetes Association via the DOI in this record.Objective: Monogenic diabetes, a young-onset form of diabetes, is often misdiagnosed as Type 1 diabetes, resulting in unnecessary treatment with insulin. A screening approach for monogenic diabetes is needed to accurately select suitable patients for expensive diagnostic genetic testing. We used C-peptide and islet autoantibodies, highly sensitive and specific biomarkers for discriminating Type 1 from non-Type 1 diabetes, in a biomarker screening pathway for monogenic diabetes. Research Design and Methods: We studied patients diagnosed ≤30y, currently <50y, in two UK regions with existing high detection of monogenic diabetes. The biomarker screening pathway comprised 3 stages: 1) Assessment of endogenous insulin secretion using urinary C-peptide/creatinine ratio (UCPCR); 2) If UCPCR≥0.2nmol/mmol, measurement of GAD and IA2 islet autoantibodies; 3) If negative for both autoantibodies, molecular genetic diagnostic testing for 35 monogenic diabetes subtypes. Results: 1407 patients participated (1365 no known genetic cause, 34 monogenic diabetes, 8 cystic-fibrosis-related diabetes). 386/1365(28%) had UCPCR≥0.2nmol/mmol. 216/386(56%) of these patients were negative for GAD and IA2 and underwent molecular genetic testing. 17 new cases of monogenic diabetes were diagnosed (8 common MODY (Sanger sequencing), 9 rarer causes (next generation sequencing)) in addition to the 34 known cases (estimated prevalence of 3.6% (51/1407) (95%CI: 2.7-4.7%)). The positive predictive value was 20%, suggesting a 1-in-5 detection rate for the pathway. The negative predictive value was 99.9%. Conclusions: The biomarker screening pathway for monogenic diabetes is an effective, cheap, and easily implemented approach to systematically screening all young-onset patients. The minimum prevalence of monogenic diabetes is 3.6% of patients diagnosed ≤30y.This study was funded by the Department of Health and Wellcome Trust Health Innovation Challenge Award (HICF-1009-041; WT-091985). ATH and SE are Wellcome Trust Senior Investigators. ATH is an NIHR Senior Investigator. BS, ATH, MH, SE, and BK are core members of the NIHR Exeter Clinical Research Facility. EP is a Wellcome Trust New Investigator. TM is supported by NIHR CSO Fellowship. JP is partly funded by the NIHR Collaboration for Leadership in Applied Health Research and Care for the South West (PenCLAHRC)

    Identification of IncA/C plasmid replication and maintenance genes and development of a plasmid multilocus sequence typing scheme

    Get PDF
    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae. They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM. Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053. Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies

    Structural basis of transposon end recognition explains central features of Tn7 transposition systems

    Get PDF
    Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Ã… cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition

    MRCK-1 Drives Apical Constriction in C. elegans by Linking Developmental Patterning to Force Generation

    Get PDF
    Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis
    • …
    corecore