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ABSTRACT

DEFY: A Deniable File System for Flash Memory

Timothy M. Peters

While solutions for file system encryption can prevent an adversary from determin-

ing the contents of files, in situations where a user wishes to hide even the existence

of data, encryption alone is not enough. Indeed, encryption may draw attention to

those files, as they most likely contain information the user wishes to keep secret, and

coercion can be a very strong motivator for the owner of an encrypted file system to

surrender their secret key.

Herein we present DEFY, a deniable file system designed to work exclusively

with solid-state drives, particularly those found in mobile devices. Solid-state drives

have unique properties that render previous deniable file system designs impractical

or insecure. Further, DEFY provides features not offered by any single prior work,

including: support for multiple layers of deniability, authenticated encryption, and an

ability to quickly and securely delete data from the device. We have implemented a

prototype based on the YAFFS and WhisperYaffs file systems. An evaluation shows

DEFY performs comparatively with WhisperYaffs.
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CHAPTER 1

Introduction

Encrypted file systems are the typical solution to protecting sensitive data. Our

current encryption mechanisms cannot be broken in a reasonable amount of time

if we assume that our adversaries are confined to a brute force approach. In some

cases, however, adversaries are more powerful and are able to use coercion to achieve

their means. In these cases, standard encrypted file systems are insufficient because

they leak the existence of encrypted data–potentially even the size of that data. This

scenario is where deniable file systems become useful.

Deniable file systems have been a subject of research since their introduction in

1998 [15]. Since that time there have been many valuable contributions to the field.

To our knowledge, however, all previous deniable file systems have been designed for

magnetic disk drives–or related technologies. The assumptions that previous authors

made in their deniable file system designs are not valid if those designs are applied

to flash memory. Flash must be treated differently. In this work we present what we

believe to be the first deniable file system for flash memory.
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The Prevalence of Flash

Mobile devices are becoming increasingly ubiquitous and powerful. They collect

and store large amounts of personal or sensitive information. Some users need to

protect that data from unauthorized access just as they would on normal platforms.

Evidence of this need can be found on the Android Play store where there are a

number of privacy-enhancing technology apps. These apps include: ChatSecure [9]

(secure texting), WhisperYaffs [7] (an encrypted file system), RedPhone [5] (encrypted

calls), TextSecure [6] (secure texting), Orbot [10] (tor for mobile), Lookout [11] (data

backups and anti-virus), and many more.

The standard method of preventing unauthorized access to information on mobile

devices is the same as in general secure communication: encryption. While encryption

serves to limit access to certain files, it does not attempt to hide their existence. In

fact, encryption reveals the existence (and often, size) of information that the user

does not want others to see.

In many environments, allowing an adversary to learn that a device contains

sensitive data may be as damaging as the loss or disclosure of that data. Consider

covert data collection in a hostile country, where mobile devices carrying information

might be examined and imaged at border checkpoints. Inspectors may discover the

presence of encrypted data, or identify changes to the encrypted file system over time,

and demand that they be decrypted before allowing passage. This is not a fictional

scenario. In 2012, a videographer smuggled evidence of humans rights violations

out of Syria. He lacked any data protection mechanisms and instead hid a micro-

SD card in a wound on his arm [28]. In another example, the human rights group

Network for Human Rights Documentation - Burma (ND-Burma) collects data on

hundreds of thousands of human rights violations by the Burmese government. They

collect testimony from witnesses within the country that the Burmese government
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would not want released, putting both activists and witnesses in grave danger should

the government gain access to that data [8]. In light of the control exerted by the

government over the Internet within Burma [34], ND-Burma activists carry data on

mobile devices, risking exposure at checkpoints and border crossings. Risk to activists

and witnesses could be lessened if this group used a mechanism to hide their data

such that inspectors couldn’t reasonably infer its existence on devices.

Deniable File Systems

The common solution to securing data under the aforementioned situations is a

class of file system known as deniable file systems. Deniable file systems mask all

information about the stored data, and provide a user with a means to plausibly

deny any storage artifacts on their device, typically by encrypting data with different

keys based on the sensitivity level selected for the data. In this paper we present

DEFY, the Deniable Encrypted File System for YAFFS. DEFY is specifically de-

signed for flash-based, solid-state drives—the primary storage device found in most

mobile devices. The physical properties of flash memory introduces unique challenges

to plausible deniability. In particular, hardware-implemented wear leveling essen-

tially forces DEFY to embrace a log-structured design. All known methods to ensure

security and prevent data loss (i.e. resulting from overwriting hidden blocks) are inap-

plicable in this setting, as are strategies that require in-place modification of blocks.

This causes DEFY to take a significant departure from previous deniable file system

designs.

DEFY also provides a number of features not previously offered in prior work:

• DEFY has been designed to be resistant to a more powerful, and more realistic,

adversary than previously considered by the literature.

3



• DEFY is supportive of an arbitrary number of user-defined, security levels;

• DEFY is the first encrypted file system for mobile devices to provide authenti-

cated encryption;

• DEFY provides a fast and efficient mechanism to securely delete data, allowing

individual files or the entire file system to be deleted in constant time.
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CHAPTER 2

Background

Flash Memory

Pushed by demand for mobile devices, solid-state memory has become a popular

alternative to hard disk drives, due to its low power consumption, high speed, low

noise, and lack of moving mechanical parts (increasing durability). The evolution

of flash memory technology has been a balancing act between cost, capacity, perfor-

mance, lifespan, and granularity of access/erasure. The most recent generation of

flash is NAND flash. NAND is cheaper to manufacture and many more bytes fit into

a single die than in previous EEPROM and NOR technologies: current NAND chip

sizes are as large as 256GB.

The distinguishing qualities of flash memory require it to be treated differently

than disk drives. NAND offers random-access reads and writes at the page level,

but erasure occurs at the block level. For example, an 8GB NAND device with 212

blocks can write an individual page (4KB) but must erase at the granularity of a

block (256KB). After erasure, pages may be programmed once, and must be erased

before being programmed again. This is known as the program-erase cycle.
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Pages in NAND flash are accompanied by an Out of Bound (OOB) area that can

be used to contain metadata and error correction codes for the page’s data. Since

writes occur only at the page level, error correction must also occur at the page level,

and is often stored in the OOB.

Flash memory has a limited number of program-erase cycles before becoming

unreliable, and can range anywhere from 10,000 to 100,000 cycles. To extend their

life, many solid-state drives employ a wear leveling strategy, whereby drivers internally

distribute erasures and writes across the medium, evenly. This results in a disconnect

between the logical and physical block address space—rewriting data to a logical

address may result in that data being stored in two, separate physical blocks. Wear

leveling can be done statically or dynamically. A dynamic implementation does not

attempt to move information once it is written—or static. Instead, it allocates pages

based on a least-written count. Static implementations target the static data on the

device. They will move that static data if the pages it is stored on have been under-

utilized compared to other pages on the device. Most devices choose the dynamic

implementation for simplicity and speed [2].

On Linux, flash devices may be accessed using the memory technology device

(MTD) driver, which provides near “raw” access to the flash device. MTD provides

no write leveling, and thus no safeties to prevent cell overuse. Unsorted block images

(UBI) is a higher level flash interface that provides wear-leveling and volume man-

agement. A flash translation layer (FTL) can also be used to provide a simplified,

block-level interface, in exchange for a loss of low-level control over data placement

and strict overwrites [3].
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Secure Deletion

Secure deletion is the process of permanently deleting data. Data is considered to

be securely deleted if it has been irrevocably removed from a physical medium. Even if

an adversary later gained access to that device and its decryption keys (if applicable),

they should be unable to retrieve the deleted data. This can be accomplished by de-

stroying the device, which is usually undesirable, or by making the data permanently

inaccessible. The most conventional secure deletion mechanism is overwriting data

after it has been erased, which was proposed by Gutman [21]. This method works well

for devices that allow data to be updated in-place, like magnetic disk drives. Reardon

et al. separate devices into those with in-place updates (like magnetic disk drives)

and those without in-place updates (like flash devices and tape-drives) [32]. Without

in-place updates, it can be impossible to know if a piece of data has been erased unless

the entire device is erased. An alternative to erasing the entire drive is to zero-fill

all of the space on the drive that is unused. Unfortunately, a flash controller’s write

leveler (discussed in section 2) may choose to ignore the zero-fill requests and instead

just mark the pages as erased instead of actually zero-filling them. In short, there is

no simple way to ensure secure deletion on write-leveled flash memory, which makes

it extremely difficult to extend security to flash devices.

An alternative method to overwriting data is to delete it cryptographically. Swan-

son and Wei [41] proposed encrypting all data on a flash device with a single key.

The data on the device can be securely erased by securely erasing that key. Reardon

et al. [33] advanced this idea by suggesting that each page should be encrypted with

its own key. This allows the granularity of secure deletion to be reduced to the page

level. Obviously, this method still requires a small secondary file system where the

keys can be stored, but it also brings page-level secure deletion to devices without

in-place updates. This is the only way that we know of to provide secure deletion on
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flash devices.

Authenticated Encryption

Standard encryption methods only ensure the confidentiality of data—they keep

it secret—they do not provide integrity—the ability to know if the data has been

modified. The user of a standard encrypted file system would be unable to directly

detect a change to the ciphertext during the decryption process, an thus such a change

could go unnoticed. Authenticated encryption [16] provides both confidentiality and

integrity to encrypted data. This ensures that if data is decrypted correctly, the

content is what was originally encrypted. This property is particularly synergistic in

environments where storage devices may be ceased for inspection.

Authenticated encryption requires message expansion—the ciphertext is larger

than the original plaintext. Existing work in encrypting file systems (e.g. [12, 17, 42])

use only unauthenticated block ciphers, which preserve message size, to meet the

alignment constraints of block-based storage devices. In practice, additional storage

must be found for the bits of the ciphertext expansion.

The process of encrypting data takes a plain text and produces a ciphertext and

an authentication tag. The authentication tag is generated by a Message Authentica-

tion Code (MAC) or hash function. The ciphertext and the authentication tag can be

created in three ways. The most secure method of authenticated encryption is to en-

crypt the message data and then hash that ciphertext to generate the authentication

tag. In reverse, the ciphertext is rehashed and validated against the given authenti-

cation tag. Without breaking the hash function, an adversary shouldn’t be able to

modify the ciphertext or the authentication tag in anyway that is undetectable.
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Encrypted File Systems

There are currently two options for encrypted file systems: encrypted file systems

or full disk encryption. Encrypted file systems encrypt data at the file system level.

The meta-data to those files may or may not be encrypted along with the files. Blaze

presents an encrypted file system that works with the standard Unix file system

interface and encrypts the associated meta-data [17]. Wright produced another such

encrypted file system that works at the user level [42].

Full disk encryption schemes encrypt data at the block-device driver level. These

encryption schemes usually lack visibility of actual files. Instead they ensure that

each block on the device is encrypted regardless of its contents. TrueCrypt is one

such full disk encryption scheme [12], WhisperYaffs is another [7].

Deniable File Systems

The unique quality of a deniable file system over an encrypted file system is that it

is impossible to prove the existence of any file or files in the deniable file system–thus

a stored file’s existence is always deniable. In general, this deniability is achieved by

making the entire file system appear to be random noise. Using a set of keys, the user

can unlock parts of a deniable file system while leaving the rest as apparent noise.

Even when the entire file system is unlocked, the noise persists in some areas. This

prevents an adversary from being able to know when all of the files have been retrieved

from the file system. Typically, the adversary to the users of these file systems has

the power to force a user to give up at least one key to that file system. Thus, they

usually rely on the user to separate sensitive data from normal data and only provide

access keys to the non-sensitive data when coerced.
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Threat Models

There are two types of adversaries that this file system was designed to protect

against: the single-view adversary and the snapshot adversary. It is assumed that

these adversaries will know everything about how DEFY works and will guess that it

is in use if they find anything related to it on a device. In the context of adversaries, an

access to the device provides that adversary with a complete raw copy of the device.

The adversaries should be unable to prove the existence of any sensitive data if the

user sets up the file system correctly and does not reveal the keys to that sensitive

data.

Single-View Adversary

The single-view adversary is one who is able to access the file system and its

user once. Among other scenarios, this models some sort of checkpoint where the file

system of a device is inspected. The inspectors may ask for a password to the device

and attempt to inspect a raw dump of the device. It assumes that the inspectors will

not save the image and associate it with a particular device or individual.

Snapshot Adversary

The snapshot adversary is very similar to the single-view adversary, but the in-

spectors are allowed multiple accesses to the device. They keep the raw images of the

device device between checkpoints. Then, by comparing two different raw dumps of

the device the inspectors could determine which pages of memory have changed.

This adversary has some very real use cases. An example of a snapshot adversary

is a country with multiple security checkpoints that communicate data about their

visitors. A reporter would need to pass through a checkpoint on the way into the

10



country and on the way out. That reporter may also need to pass through other

checkpoints within the country. Thus the reporter would need to pass through at

least two checkpoints, and would need a file system that was strong enough to protect

sensitive data against that level of intrusion.
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CHAPTER 3

DEFY: Overview

DEFY is a deniable file system that is specifically designed for flash memory. It

was implemented as a Linux kernel module based on previous work in both YAFFS

and WhisperYaffs.

Dependencies

YAFFS

YAFFS is a file system designed for use on raw NAND flash memory. Due to its

simplicity, portability, and small memory footprint, YAFFS is commonly used as the

default file system in many mobile devices, including the Android operating system.

YAFFS is a true log-structured file system [37, 39] in that write requests are allocated

sequentially within the logical address space. Its design is largely motivated by a

desire to integrate device-level wear leveling. Next, we briefly summarize YAFFS’s

design; for a more thorough description, we direct readers to Manning [26] and other

resources, such as Schmitt et al. [38].
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Terminology and Data Structures

YAFFS is described by its designer, Charles Manning [26], using terminology that

is slightly different than that of traditional file systems. Every YAFFS partition is

compromised of a set of blocks, and each block is composed of some number of chunks.

The unit of allocation is the chunk, which ranges in size from 512-bytes to 32KB and

corresponds to one or more pages in the underlying NAND technology. The unit

of erasure is the block, with a capacity of 32–128 chunks, depending on the NAND

block capacity. YAFFS uses the OOB space provided by a flash device to store chunk

metadata and an error correction code.

We remark that there are two versions of YAFFS: YAFFS1 and YAFFS2. The key

distinctions between these are two fold: (1) YAFFS1 was designed to work with page

sizes up to 1KB while YAFFS2 supports larger pages, and (2) YAFFS2 implements a

true log-structured file system, performing no overwrites when new data are written.

For further details on the differences of these versions, see Manning [26]. This paper

refers exclusively to the YAFFS2 design, thus we use the terms YAFFS2 and YAFFS

interchangeably.

Every YAFFS entity (files, directories, links, etc.) is maintained as an object, with

an object header. Each object header stores metadata about its respective object,

including the object name, size, and location of data chunks. A directory’s object

header contains the location of the object headers for its subdirectories and files.

Writing

Write requests are divided into chunks, allocated and written sequentially fol-

lowing the leading edge of the log (the last chunk written). If the leading edge is

the last chunk of a block, YAFFS searches for the next block past the leading edge
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that is empty or available for allocation. Every chunk is assigned a sequence num-

ber—stored in the OOB section of memory. The sequence number is monotonically

increasing—i.e. the last chunk written has the highest sequence number—making it

the new leading edge of the log. The leading edge is the starting point for the system

when searching for the next chunk to allocate.

When a file’s contents are updated, the affected data chunks are rewritten to the

device into new chunks. The old chunks are not affected during the rewrite process,

but the new chunks that contain the most recent information are assigned higher

sequence numbers. These sequence numbers allows YAFFS to find and use only the

most up-to-date chunks. Chunks individually store which parent object they belong

to, so the parent objects do not need to be modified each time a chunk is updated.

Similar actions are triggered when any other parts of the file system are modified.

Mounting

As in LFS, YAFFS supports special objects known as checkpoints, which commit

information about the state of the file system to the drive. On mount, YAFFS

searches for the most recent checkpoint to reconstruct in-memory data structures. In

the absence of a checkpoint, YAFFS scans the entire disk, creating a list of blocks,

sorted by sequence number. Then, in descending order, it examines the contents of

each block. Invalid chunks are ignored and every valid chunk in the block is added

to a corresponding in-memory object (creating an object, if necessary).

Unlike most disk files systems (e.g. ext2/3/4, NTFS, HFS+), a YAFFS partition

does not need to be formatted before being mounted. If no valid objects or checkpoints

are found during mounting, all blocks are marked as available for allocation.
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Whisper YAFFS

WhisperYaffs is a system for providing full disk encryption (confidentiality without

authenticity) on flash devices [7]. A prototype version of it was released to GitHub by

WhisperSystems in 2011. Currently, WhisperYaffs isn’t a product offered by Whis-

perSystems nor does it seem to be under active development. For this project, we

updated that GitHub version of WhisperYaffs to work with a more modern Linux 3.8

kernel.

The full disk encryption that WhisperYaffs provides is created using AES-XTS

encryption. AES-XTS uses ciphertext stealing to enable encryption of sections of data

that are not divisible by the AES block size. Ciphertext stealing takes the ciphertext

from an encrypted block and uses it to pad the non-AES-sized block up to the AES

block size so that it may be encrypted. This is used to encrypt the OOB section

of a chunk, which varies in size, but is smaller than an AES block. WhisperYaffs

first encrypts the data of a chunk and then proceeds to steal ciphertext from that

encryption to encrypt the OOB section. Both the data and the OOB section of a

chunk must be retrieved to decrypt either.

XTS mode requires both a key and a tweak. WhisperYaffs uses two separate

tweaks, one for each encryption (chunk and OOB area). When the chunk data is

encrypted, WhisperYaffs uses the logical chunk address multiplied by two. For the

second encryption of the OOB data, WhisperYaffs encrypts using the logical address

multiplied by two plus one. Thus, the two tweaks are related but unique for each

chunk in the device.

The encryption key that WhisperYaffs uses is randomly generated when the file

system is created. It is stored in the first good block of the flash device. That block

is subsequently hidden from the rest of the file system and encrypted using the user

password—which is expanded through PBKDF2.
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Interestingly, the designers of WhisperYaffs chose not to encrypt the sequence

number of the chunks. This does not leak any of the contents of the device, but it

could be used to determine which chunks were changed most recently. If an adversary

had two disk images he could determine which chunks had changed and thus determine

an upper bound on the amount of changed data.

System Overview

Like WhisperYaffs, DEFY encrypts each chunk including the OOB areas resulting

in a full disk encryption. What distinguishes DEFY from WhiserYaffs and YAFFS,

is its ability to obfuscate the existance of data.

The general architecture of DEFY can be separated into a few key components.

The layout of these components is presented in figure 3.1 and each component is

briefly discussed below.

Operating System Interaction

DEFY is a Linux kernel module, and as such it implements the Virtual File System

(VFS) interface. The VFS interface allows the operating system to ask for a plethora

of information from DEFY. This can include file, directory, or general file system

information. It also allows the operating system to instruct DEFY to perform certain

actions–like mounting and unmounting. The VFS interface is common to all Unix

file systems so we will leave a discussion of its full requirements and specifications to

other literature.
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Figure 3.1: A high-level system view of the DEFY kernel module.

File Objects

Each file, directory, and link that is contained in DEFY is mapped to a specific

file system object. Just like YAFFS, all of these file objects are held in memory while

DEFY is mounted. The in-memory object contains all pertinent information about

itself, its attached data blocks, and each of its data chunks’ stubs (discussed below).

Objects also contain links to their children and parents, these can be used to traverse

the file object tree. Each file object can be found using its unique name or associated

object number.
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Block Manager

The block manager tracks the state of each erase block on the device. The state

of each of these blocks is determined on mount and then updated as changes occur.

DEFY’s list of possible block states is shorter than YAFFS (see [26]). It allows for

blocks to be: allocating, dead, assumed empty, or used. DEFY can only assume that

blocks are empty because all blocks are technically used at all times. This is part of

the deniability framework that ensures that no block looks different from any other

if no keys are present.

Stub Manager

The encryption process for each chunk generates a matching stub that is required

to decrypt that chunk. The stub manager manages these stubs and provides an

interface to access them in the system. It does not generate stubs, instead it simply

arranges them. Given either a logical chunk index or a file object pointer, the stub

manager can find the correct stub or stubs to decrypt the associated data from the

device. It can also store stubs, delete stubs, and iterate through stubs.

Cryptography

Everything that is encrypted or hashed must be sent through the cryptography

module. It also provides functions to generate more secure random numbers and

expand passwords based on PBKDF2. Note that, like WhisperYaffs, we did not

implement our own cryptographic primitives. We rely on the Linux kernel to provide

the actual randomization, hashing, and encryption functions.
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Device IO

The device IO module deals with reading and writing data to the flash device–

which includes the OOB data. Like YAFFS, DEFY is designed to work with the MTD

interface. At this level DEFY may write and read directly from specific pages on the

flash device. Corrupted and damaged pages are not hidden from DEFY, the MTD

interface will return read or write errors that DEFY notes in the block manager.

DEFY could be ported to work on top of a UBI or a FTL as long as another

device was present that could support secure deletion, but we leave this to the future

work discussion in chapter 6.
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CHAPTER 4

DEFY: Design

DEFY is designed as an extension to the YAFFS file system, with security features

inspired by WhisperYaffs. We chose YAFFS because it is designed to operate on

raw NAND flash, handles wear-leveling, is widely-deployed, and is open-source. To

YAFFS we add authenticated encryption, cryptographic secure deletion, and support

for multiple deniability levels that are resistant to strong adversaries. A comparison

of DEFY’s features with existing work appears in Chapter 7. The following provides

a high-level description of DEFY’s main design features.

This is our second implementation of DEFY. Our first deniable file system design

was implemented using dummy blocks. We, however, found a vulnerability in that

design and discarded it. For interest, a discussion of that design is included in the

appendix (see 8). Our second design appears to be strong against the single-visit

adversary and the snapshot adversary.
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Privilege Levels

Like many previous deniable file systems, DEFY separates files into one or more

privilege levels. The exact number of levels created is specified by the user. The

system maintains no record of how many levels exist in the system; it can only know

which levels are currently open. When a user reveals a level, all lower levels are also

revealed. This is a convenience that helps to minimize the chance of overwriting (see

4) and follows the conventions of previous work.

When mounted, privilege levels appear as directories under the root directory of

the file system. Each of these top-level directories is associated with a unique name

(like level 0, level 1, .., level n). All files for a deniability level are located below its

top-level directory. Assigning deniability to directories at the root level is strategic

and provides a number of advantages. Level directories allow for easy inheritance of

deniability levels. Objects created within a directory will, by default, inherit the level

of that directory, i.e. be correctly encrypted at the appropriate level. We believe this

behavior to be quite natural, following the tradition of other security semantics (e.g.

file system permissions), and frees users of the burden of assigning deniability levels to

individual files. Separating deniability level namespaces through level directories, also

forces users to be more thoughtful, and perhaps, careful about how they categories

the sensitivity of their data.

Each of these levels are maintained like separate file systems but they exist in the

same logical address space on the device. This is necessary for our deniable encryption

scheme that is discussed in the following sections.
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Authenticated Encryption

The two key challenges associated in implementing authenticated encryption in

DEFY are: (1) designing a file system that can accommodate the data expansion that

results from authentication and, (2) designing an encryption scheme that is supportive

of efficient and granular secure deletion. Here, we focus our discussion on the former,

leaving a discussion of the latter for the next section (4).

DEFY’s encryption scheme is presented in figure 4.1. The algorithm takes as input

a data chunk, broken into n, 128-bit messages (p1, . . . , pn), the OOB data (oob), a

unique identifier for the chunk (id), a unique global counter (t), a level encryption key

(K`) and a level MAC key (M`). The algorithm implements an encrypt-then-MAC

scheme: first encrypting the data and OOB using AES in cbc mode (AES-CBC),

then MAC-ing the resulting ciphertext of the data using a SHA256-based message

authentication code (HMAC-SHA256).

The encryption of the OOB area is treated specially due to its inconsistent size.

The exact size of the OOB area depends on the flash device, but the majority of the

time it is not an even multiple of the AES block size–which is required to use the

AES encryption algorithm. To fix this problem, we perform ciphertext stealing from

c1: this takes ciphertext from c1 and appends to oob until there is a full AES block

size worth of data to encrypt. The result of the encryption operation is then stored

back in oob and c1–over the previously stolen ciphertext.

An additional cbc mode encryption is performed using the authenticator as its

key to complete an all-or-nothing transform (described later). A stub (s) is created

by XOR-ing all the ciphertext message blocks (x1, . . . , xn) with the authenticator (σ).

The resulting tag is small and not secret, rather, it is an expansion of the encrypted

data and is subject to the all-or-nothing property. The ciphertext (x1, . . . , xn) is

written to disk as data, the encrypted OOB (xoob) is written to the OOB area, and
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Input: Chunk Data p1, . . . , pn, OOB Data oob,

Chunk ID id, Level Constant t, Level Encryption Key

K`, MAC Key H`

1: ctr1 ← id||t||1||0128−|t|−|id|−1

2: c1, . . . , cn ← AES-CBCctr1
K`

(p1, . . . , pn)

3: xoob, c1 ← AES-CBCctr1+n
K`

(oob, c1)

4: σ ← HMAC-SHA256H(c1, ..., cn)

5: ctr2 ← id||t||0||0128−|t|−|id|−1

6: x1, . . . , xn ← AES-CBCctr2
σ (c1, ..., cn)

7: s← σ ⊕ x1...⊕ xn

Output: Stub s, Ciphertext x1, . . . , xn,

Encrypted OOB Data xoob

Figure 4.1: Authenticated encryption for a single chunk in DEFY

the tag (t) is stored as metadata in the parent object.

The decryption algorithm is the exact opposite of this process and is presented in

figure 4.2. Note that due to the ciphertext stealing the encrypted OOB data must be

decrypted before the ciphertext blocks (c1, . . . , cn) can be decrypted. The decryption

process of OOB returns both the decryption of OOB and the stolen bytes of c1.

The same counter and key pair should never be used for encryption more than

once, so we use a chunk’s physical disk address for id and a global sequence counter

t; both characteristics exist within a DEFY object and, by policy, are non-repeatable

in a file system. The encryption key and MAC key are also distinct between levels.

We remark that other constructions for achieving all-or-nothing encryption, lever-

aging other cryptographic modes and algorithms, may provide better performance or

a more elegant design. For example, Steps 1,2, and 4 of Figure 4.1 may be combined
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Input: Stub s, Ciphertext x1, . . . , xn, Chunk ID id,

Encrypted OOB Data xoob, Encryption key K`, MAC

key M`, Level Constant t

1: ctr2 ← id||t||0||0128−|t|−|id|−1

2: σ ← s⊕ x1...⊕ xn

3: c1, ..., cn ← AES-CBCctr2
σ (x1, ..., xn)

4: σ′ ← HMAC-SHA256M`
(c1, ..., cn)

5: if σ′ 6= σ then return Error

6: ctr1 ← id||t||1||0128−|t|−|id|−1

7: oob, c1 ← AES-CBCctr1+n
K`

(xoob, c1)

8: p1, ..., pn ← AES-CBCctr1
K (c1, ..., cn)

Output: Chunk Data p1, . . . , pn, OOB Data oob

Figure 4.2: Authenticated decryption for a single chunk in DEFY

into a single call of OCB mode [36], which requires only one pass over the data and

is fully parallelizable. Our construction acts as proof-of-concept and an exemplar for

achieving our design goals.

Encryption-Based Deletion

The same AON transform that provides authenticated encryption, also provides

for a means for efficient and granular secure deletion. The original AON transform,

due to Rivest [35], is a cryptographic function that, given only a partial output, re-

veals nothing about its input. No single message of a ciphertext can be decrypted

in isolation without decrypting the entire ciphertext. The original intention of the

transform was to provide additional complexity to exhaustive search attacks, by re-

quiring an attacker to decrypt an entire message for each key guess. AON has been
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proposed to make secure an RSA padding scheme [16], to make efficient smart-card

transactions [18, 19, 22], message authentication [20], and threshold-type cryptosys-

tems using symmetric primitives [14].

Our design implements a encryption-based secure deletion scheme that is inspired

by Peterson et al.’s AON technique for secure deletion of versioned data [31]. The

all-or-nothing transform allows for any subset of a ciphertext block to be deleted (e.g.

through overwriting) in order to delete the entire ciphertext; without all the cipher-

text blocks, the chunk can never be decrypted. When combined with authenticated

encryption, the AON transform creates a message expansion that is bound to the same

all-or-nothing property. This small expansion becomes the stub (from section 4) and

can be efficiently overwritten to securely delete the corresponding chunk. Indeed,

message expansion is fundamental to our deletion model and the AON transform is

a natural construct for providing efficient secure deletion for DEFY, as it minimizes

the amount of data needed to be overwritten, does not complicate key management,

and conforms to our hierarchical deletion model.

Stub Management

As previously discussed (4 & 4), stubs are used in DEFY to support authenticated

encryption and secure deletion. They are stored both in the metadata of objects and

in a separate stub storage area, as shown in figure 4.3.

The metadata of an object is used to store stubs for its child objects: data chunks

in the case of a file object, or file objects in the case of a directory object. When a

child object is modified, the parent object is updated with a new stub, overwriting

the previous stub and securely deleting the old version of that information. As a

result of storing a new stub, the parent object is modified. Thus, creating, deleting
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or modifying any object in DEFY will trigger a stub rotation for all the tree objects

in the direct lineage of that object up to the top-level directory.

The objects that reside in the top-level directory are still secured using stubs,

those stubs are stored in the separate stub storage area that is written to another

file system. That separate file system must support secure deletion. Some examples

of just such a flash file system are presented by Reardon et al. [33] and Lee et al.

[25]–which is also built on top of YAFFS. It would be possible to implement a similar

secure deletion scheme in DEFY, but we will leave that for future work.

The stub storage area contains a map of chunk numbers and their associated

decryption stubs. It is stored in a stub file of fixed size. This imposes an upper

bound on the number of chunks in the top-level directory of the file system–other

directories lack this bound. The stub file’s size = the number of bytes per stub × the

number of allowed top-level chunks × the maximum number of levels. Each section

of the stub file that corresponds to a particular privilege level is then encrypted using

the appropriate key for that level of the file system. The encryption step hides the

plain text chunk locations that are used by a particular level. It would be difficult

to maintain deniability if the adversary knew exactly which chunks were used by

which level of the file system–including the unused levels. When chunk location and

matching stub data is encrypted, even changing a single byte in the stub list will

result in an entirely different output that is saved to disk.

The user may or may not use all of the available levels in DEFY. If the user

chooses not to use all of the levels, they may instruct DEFY to randomize those

sections of the stub storage area, to prevent sections of the stub storage area from

remaining constant (thus revealing their lack of use). Once the user randomizes the

storage area, it contents will be irrecoverable even with the correct key–this is also a

quick way to erase a level. Without a key, the snapshotting adversary would only be
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able to determine that one or more changes took place in the stub storage area. More

automatic constructions of this operation are possible, but are also less desirable due

to the destructive power of this operation.

Stub List

Top Level 
Directory:
Level_1

...

Stub Storage Area

Directory Object

0xAAA

0xBBB

 .

262

271

 

0xABC

0x123

 .

30

300

...

Stub List

...

? D ? D ? ?? ? M?

blocks

chunks? D M ?

Stub List

0xAAA

0xFFF

 .

File Object

266

268

...

Stub List

0xDD1

0xCC1

0xEE1

File Object

258

259

261

? D D?

...

... ? ? ? ?

Chunk Keys:
? == Undecryptable 
D == Data Chunk
M == Metadata Chunk

Figure 4.3: An example of how metadata (stubs) and data are stored in
DEFY. Note that the stub lists contain the chunk address (left) and the
stub value (right).

DEFY’s hierarchy of stubs architecture has a number of advantages to achieving

fine-grained and efficient secure deletion. Individual objects, be they chunks, files,

or directories, may be securely deleted by overwriting their corresponding stubs and

performing a stub rotation. This granularity extends to the top-level level directories,

allowing a user to securely delete an entire level or the entire file system by overwriting

the stub storage area as discussed. And because YAFFS, and thus DEFY, stores all

metadata objects in memory, stub rotations only affect in-memory structures in the

short term. This behavior limits the system’s standard performance overhead to the

computation of new stubs. Eventually, however, the memory structures are written

to disk and do require additional I/O.
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Placeholder Blocks

Placeholder blocks serve two purposes in DEFY: (1) they mark the current head of

the log for a particular level and (2) they aid in augmenting deniability. Placeholder

blocks were inspired by checkpoints, which are common in log-structured file systems

[37, 39]–including YAFFS.

Each time DEFY is unmounted it writes a placeholder block for each level. The

placeholder blocks for each level are written in order of greatest privilege to least

privilege (see figure 4.4). This places the least privileged level’s block last. Thanks

to DEFY’s convention of unlocking all levels in order, data from the least privileged

level will always be available if DEFY is mounted. By placing the least privileged

level’s block last, we can ensure that all file systems will know where the head of the

log is, and subsequently where to begin writing without overwriting data.

?  E E

Last Used Block

Level 2

Level 0

Level 1

Place Holder Blocks

? == Undecryptable Block

E == Assumed Empty Block

Figure 4.4: A multi-level view of the placeholder block order. The highest
privilege level’s block is written first and the lowest privilege level’s block
is written last.

The placeholder block is not a distinct block type–like a checkpoint block. Instead,

it is simply a block that was selected by the normal allocator (4) at the head of the file

system and filled with file objects from the top-level directory. The objects that are

written to the placeholder block follow the normal update cycle–where their previous

chunks are deleted. The benefit of using top-level objects is that the stub rotation
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process is brief.

The ordering of each level’s placeholder block ensures that the file system has a

consistent size no matter which levels are unlocked. It also ensures that a snapshot

adversary cannot determine anything about the existence of higher levels. For exam-

ple, if the order were reversed and the highest placeholder block were written last,

then the snapshot adversary could determine that seemingly empty blocks past the

end of the log had changed. That sort of pattern would lead the snapshot adversary

to realize there were unlocked levels.

If the file system is used without all levels unlocked then only the unlocked levels

will be written to placeholder blocks. Again, this is not problematic given that

DEFY loads the least privileged level first and writes that placeholder blocks last.

This protection scheme allows DEFY to avoid overwriting in most cases.

Chunk Allocation

The chunk allocator in DEFY has been designed to provide support for distinct

privilege levels and reduced data collisions. Its allocation scheme also eliminates the

need for a distinct garbage collector.

Unlike YAFFS, chunks and blocks are associated to a particular level in DEFY

(as shown in figure 4.5). As such, the chunk allocator will only assign chunks from

a particular level’s current chunk allocation block. When an allocation block is fully

written another block must be selected. The choice of block is the next block that

is undecrytable or assumed to be empty. The next block is usually the next physical

block, but may wrap around the end of the device.

Once the file system has wrapped around the end of the device it will continue to

choose blocks that appear to be empty—or are undecryptable. It may choose blocks
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Block: Allocating

Level 2

Chunks (bitmap):

 == Assigned Chunk

Block: Allocating

Level 0

Chunks (bitmap):

Block: Allocating

Level 1

Chunks (bitmap):

Block: Used by

Level 0

Chunks (bitmap):

 == Empty Chunk

Figure 4.5: This is an example of current allocation blocks from various
levels. It shows that three levels are currently in use and have open allo-
cation blocks.

that were previously erased—replacing the behavior of a garbage collector—or blocks

that are currently in use by unrevealed levels of the file system. The latter is the only

case where DEFY will overwrite data. For this reason, the user should only write

data when all levels of the file system have been revealed—thus guaranteeing that

DEFY will not overwrite data.

Due to flash hardware, a block must be erased before its individual chunks can be

rewritten. When a block is selected to be used for allocation it is erased. If that block

has not been fully utilized when the file system is closed, it is filled with random data

that is again encrypted using ephemeral stubs. This behavior mimics the strategy

that is used when the file system is initialized.

File System Operations

Initialization

When the user creates a new DEFY file system, he must provide the number of

levels he desires and a unique password for each. Each password is expanded using
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PBKDF2 using an appropriate number of iterations [23]. DEFY uses each password

to protect the randomly generated encryption key for that level. It also protects

the randomly generated hash key and level constant that are used in the encryption

process. All of this information is stored in a single erasable block at the beginning of

the file system. This is known as a key block. One key block is allocated per level even

if that level is not used. If the user chooses to use less than the maximum number

of levels allowed by the system, those blocks are effectively wasted. This waste is

necessary to prevent the adversary from being able to determine if a block has been

used or not and thus if a level exists or not. The unused blocks are encrypted with the

same procedure as the used blocks. The only difference is that a randomly generated

ephemeral key is used. DEFY ignores the existence of these key blocks for all other

file system operations. The effective 0th block for the file system is the first block

after the key blocks. An example layout of these key blocks can be seen in figure 4.6.

0 1 2 E E E

0
th
 Block 0

th
 FS Block

Key Blocks

Figure 4.6: A view of the key blocks of a 5 level file file system with only
the first 3 levels used. All file system operations and the block allocator
treat the 5th block (white) as the 0th block.

Note that DEFY will not write keys to bad key blocks. If a bad block is detected

in the key block area, that block will be skipped and the keys will be written to the

next block. This will result in holes in the key block area which leads to the 0th file

system block being offset further than the maximum number of key blocks. When
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the file system is mounted, DEFY compensates for these potential holes by iterating

forward from the first block on the device looking for key blocks.

The remaining blocks in the file system are erased, and then written with random

data. The actual data that we write to each chunk is randomly generated and then

encrypted with a random key. The data, its generated stub, and the key are all

thrown away between chunks. This method ensures that adversaries can only compare

the output of one encryption to the output of another encryption. If data were

generated randomly and then written directly to disk, the adversary would be allowed

to compare the output of a random number generator with the output of an encryption

function, which is less desirable.

The stub file is created at this time with enough space for every levels’ top-level

stubs. As discussed in 4, it is created on another file system that must support secure

deletion. The exact location of the file is user-definable. Its contents, even when

blank are encrypted using the level key that is stored in the matching key block.

The number of levels in the system could be changed if desired. To remove a level,

its key block and all of its associated file system blocks could be wiped and filled with

encrypted random data as previously discussed. Adding a level would be as simple as

replacing the next unused key block if space was available. If space wasn’t available,

the user could choose to remove a level and then re-use the old key block. This feature

does not currently exist in our implementation.

The total number of levels in our implementation is set to 30. This is an arbitrary

number, that can be changed easily if desired. A smaller maximum number of levels

results in reduced memory requirements but also reduces the potential for additional

levels.

32



Mount

The actions to mount the DEFY file system are significantly different from those

of YAFFS [26]. YAFFS relies on sequence numbers to determine which chunks are

most up-to-date. Those sequence numbers are written to every chunk’s OOB area

regardless of their status as an object, data, or other type of chunk. When YAFFS

is mounted it can either use a checkpoint or scan through the sequence numbers on

the device. Using a checkpoint is preferable due to speed, but valid checkpoints are

not always available on the device. The scanning alternative consists of a number

of steps. First it pre-scans all of the chunks on the device looking for the highest

sequence number. As each chunk is scanned, it is added to a sorted list that is

ordered by sequence number. Second, that list is scanned in reverse. This guarantees

that the objects that are built reflect the most up to date information. If duplicates

objects are found later in the list, they are assumed to be out of date. This scanning

process is slow, especially with larger devices.

DEFY does not need to rely on sequence number scanning or checkpoints. Instead,

it takes advantage of its stub file and the fact that there are no out-of-date chunks

in in the file system. The stub file contains the roots–both chunk indexes and stub

keys–of each file object in the file system. DEFY uses that stub file as a starting

point and walks down through each key tree to build all of the necessary in-memory

information.

Placeholder blocks are used by DEFY, but they are mostly used for security

reasons as discussed in section 4. The mounting process treats placeholder blocks

like any other blocks. DEFY still iterates down the file tree and loads objects as

their keys are found. Objects that are part of the placeholder block are merely close

to the head of the file system. Thus, placeholder blocks have no effect on load-time

performance in DEFY.
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Read

A file read operation requires DEFY to determine which chunks contain the desired

information. Those chunks are then read in, decrypted, and verified using the data

chunk stubs that are stored in the DEFY file object for this file. This operation does

not change any of the contents of the device.

Write

To write new information, or update a portion of the file, DEFY needs to write

new chunks to the device. This is done by requesting new chunks from the chunk

allocator as discussed in section 4. Key stubs are then generated as the data to be

written to the newly allocated chunks is encrypted as discussed in section 4. Those

stubs are then stored in the active file’s stub map and the encrypted data is written to

the device. The file object is then re-written with the new stub map, which requires

a stub rotation for all objects who have this object as a descendent.

Links

DEFY supports both hard and soft links. They are represented by file system

objects in DEFY, which are created and encrypted just like a normal file object.

For security reasons, we limited links to only being able to point at content within

a specific level of the file system. They are not allowed to point between levels or

outside DEFY.
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Delete

File deletion simply removes that file’s object from memory and removes the stub

needed to decrypt that file from the disk. This triggers as stub rotation just like the

write operation.

Create

File creation creates a new DEFY file object. That object is written to disk using

a chunk that is assigned from the chunk allocator as discussed in 4. The decryption

stub for that chunk is then added to this object’s parent object which triggers a stub

rotation.

Discussion

We believe that DEFY is strong against both the single-visit and the snapshotting

adversary. In this section we discuss how DEFY is strong against both adversaries

and what is expected of the user to maintain their data security.

Assumptions

The first assumption that we make about DEFY is that the user will be well

informed. They should know generally how DEFY works and how to use it correctly.

For example, the user of DEFY must use strong passwords. All of the defense mech-

anisms of DEFY assume that the adversary cannot simply break the keys. It would

be far easier for an attacker to brute-force a set of weak passwords than determine if

the user of the file system is being truthful. Thus, we assume that a user of DEFY

will use strong passwords to protect their obviously valuable data.
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We also assume that the device is free of malware. If the device is in anyway

compromised, the security of everything on it will also be compromised–including

DEFY. Malware could record all of the users passwords or even read data out of the

deniable file system once the user opened it.

Creating Deniability

The first and foremost goal of DEFY is to offer plausible deniability in the snapshot

adversary model—the strongest model considered in this setting. DEFY gains this

feature by using the computational indistinguishability provided by our encryption

scheme. Specifically, it should be hard for an adversary to distinguish file system

blocks that contain data from an unrevealed level, contain old/deleted data from a

revealed level, or contain random data written as part of the initialization process.

As a result, the adversary has no cryptographic rationale for compelling additional

level revelations. Indeed, it should be impossible to prove (for either party) if the

final level is ever revealed.

The basic idea behind our plausible deniability mechanism is to introduce un-

decryptable blocks into DEFY at all levels through normal file system use. These

undecryptable blocks create the necessary obscurity that allows the user to plausibly

deny the existence of additional data stored in unrevealed levels. DEFY creates this

obscurity through the forward-writing nature of log-structured file systems and its

forced delete-on-update policy. Each time a object is modified, a new chunk must

be written to reflect that change. If the change invalidates a previous versions of

the chunk, that chunk is deleted as part of the stub rotation. This creates randomly

placed “holes” in the log that can be explained by normal file system use (see Figure

4.7).

This same mechanism allows multiple levels to be combined in the same logical
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Figure 4.7: A chunk-level view of a file being truncated. As soon as chunk-
266 is deleted, a new metadata chunk is written to the head of the log.
Both of these operations create holes in the log. In this example blocks
are equal to 4 chunks

space. An example of how the blocks could be physically laid out in flash is shown

in Figure 4.8. An adversary cannot gain any information about the unrevealed lev-

els, even when a subset of levels have been revealed. Undecryptable blocks may be

attributed to old versions of data or metadata. The frequency of which, would rely

entirely on the user’s usage patterns, the types of files, and the programs used to

access those files.

Stub Storage Area

To maintain deniability against the strongest type of adversary, the user needs to

periodically randomize the unused sections of the stub storage area. As previously
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Figure 4.8: A multi-level view of blocks in DEFY.

discussed, an attacker could infer information if sections of the stub storage area

remain static. Our recommendation is for the user to randomize the stub storage

area after each suspected device inspection. Such a randomization schedule would

ensure that even a snapshotting adversary would be unable to determine which levels

of the file system were static and which were active. This operation is not required

for the single-visit adversary.

A user could employ the alternative strategy of writing data to a high level and

letting it remain static thereafter. The snapshot adversary without drive images be-

fore the high level writes could be more easily convinced that the file system contained

a subset of the actual set of privilege levels.
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CHAPTER 5

Evaluation

Testing

We wrote DEFY on top of the YAFFS and WhisperYaffs source code. DEFY

was built and tested on a Ubuntu 13.04 machine. That machine was run in a virtual

machine with 4GB of memory and a single emulated processor. We used Oracle’s

VM VirtualBox 4.3.6 to handle the emulation. The host machine ran Windows 8

with an Intel 2.8 GHz quad-core processor. The hosted machine’s Linux kernel was

modified from Linux 3.8 to allow the loading of unsigned kernel modules–like DEFY.

DEFY was tested with the MTD device simulator nandsim [3]. We used nandsim to

test DEFY with a number of different NAND configurations. For the testing results

below we emulated a 64 megabyte device with 2048 byte pages.

The same setup was used to test WhisperYaffs [7], YAFFS [13], ext3 and ext4. The

version of YAFFS that we used lacks a specific version number, but it was committed

on the 10th of August, 2013 to the YAFFS repository. Our version of WhisperYaffs

was created by merging the alpha version of WhisperYaffs from GitHub with our

version of YAFFS. Finally, we used the versions of ext3 and ext4 that were included
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with the 3.8 kernel.

The version of DEFY that we test here is limited to keeping all of the chunk stubs

in memory at all times. As a result, we found that the total file size that DEFY could

store was limited to about 2 megabytes. In future we plan to modify DEFY to allow

it to remove keys from memory and then intelligently re-fetch them from disk when

needed.

Basic Tests

We first ran defy through the Connectathon tool [4]. Successfully passing Con-

nectathon shows that DEFY complies with all standard file system operations. This

verification step was not run on the other comparison file systems.

Performance Tests

Performance was not the focus of this file system, but it was a consideration. We

chose to test DEFY’s performance using IOZone and FFSB. Each tool tests the file

system differently. FFSB uses time as the input metric, where IOZone uses data as

the input metric.

FFSB

FFSB benchmarks file systems by holding time constant and measuring the volume

of disk accesses that are possible in that time [24]. That is, it reads and writes data

until a timer expires, instead of reading and writing a finite amount of data. We

limited our runs to 1 second due to the higher speed file systems. If the time was set

any longer the emulated drive would run out of space. Our results from FFSB are

shown in figure 5.1.
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Figure 5.1: The performance of a number of file systems as measured by
FFSB.

IOZone

Unlike FFSB, IOZone tests how long it takes to write a set amount of data to a

device–perhaps the more conventional benchmarking method. Again, note that we

limited the tests to 2 megabytes in size. The outputs from these tests can be seen in

figure 5.2.

For each test category, IOZone attempts that operation on a number of uniformly

sized files up to some maximum size. For example, for a 64 kilobyte sized file test it

would try to write sixteen 4 kilobyte files, eight 8 kilobyte files, and so on up to one

64 kilobyte file. For each category, we averaged all of the transaction speeds within

each file system. An example of one of IOZone’s outputs is shown in table 5.1.

The write category measures both the speed at which a new file is created and

written to. This is dissimilar to FFSB, which measures those indicators separately.
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Figure 5.2: The performance of a number of file systems as measured by
IOZone (note the log scale).

The read category is simply the speed at which files were read. Fwrite and Fread are

the same as write and read except that they use buffered library calls. Each of these

categories is discussed in more depth on IOZone’s website and in their documentation

[29].

Discussion

We tested DEFY against the other aforementioned file systems assuming that it

would be slower. What we were interested in was how much introducing deniability

would slow it down. In particular, we were interested in how DEFY would compare to

WhisperYaffs, its most realistic competitor. Both WhisperYaffs and DEFY encrypt

each chunk as it is written to disk and decrypt it after it is read from disk. DEFY then

adds on the additional tasks of stub creation and management. YAFFS is obviously
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Write Size
File Size 4 8 16 32 64 128 256 512
64 28021 28382 26501 33559 38116
128 26084 26772 34820 26348 28809 31794
256 29297 29439 27482 30527 28070 28315 27853
512 27563 19444 18056 26590 26924 29377 26788 27938
1024 27368 25742 19303 28090 27816 27804 28331 26732
2048 28195 27689 24718 27290 28114 23215 24843 24302

Average Speed = 27.4 KB/s and Standard Deviation = 3.42 KB/s

Table 5.1: IOZone write benchmark result for the DEFY file system

the root of both WhisperYaffs and DEFY, but it does not include any encryption so

it is understandably much faster. We also included results from the Ext3 and Ext4

journaling file systems. Ext4 is used with increasing frequency on mobile devices

despite its lack of sensitivity for flash memory.

Emulation both on the behalf of the machine and the flash device doubtlessly

introduced inconsistencies in our performance data. Nonetheless, we compared all of

the file systems on the same system with the same amount of load so that they would

all be similarly encumbered.

FFSB’s output matches what we would expect from WhisperYaffs, YAFFS, ext3,

and ext4. We expected YAFFS, ext3, and ext4 to be faster than either WhisperYaffs

or DEFY. We also expected WhisperYaffs and DEFY to be comparable given that

they both have an encryption step for every chunk that is written to the device.

Finally, DEFY should be slightly slower than WhisperYaffs due to its in-memory

stub operations.

IOZone, however, produced less agreeable results. Due to our file-size restrictions,

IOZone was operating at its minimum accepted test size. It also produced a warning

that some of its output would be unreliable. Indeed, the read tests seemed to lack

resolution as they were unable to distinguish between ext3 and ext4. Because of this

inconsistency, we chose to discard IOZone’s read tests from our final evaluation, but
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we still included them here for the sake of completeness. The write tests, however,

were closer to FFSB’s output. They ranked DEFY as being twice as slow as Whis-

perYaffs on average. They also ranked both WhisperYaffs and DEFY as being much

slower than the other three file systems, which was expected.

Combining the data from all of FFSB’s tests and IOZone’s write tests we can say

that FFSB runs one to two times slower than WhisperYaffs. In our opinion this is a

more than acceptable trade off for the added benefits of deniability.
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CHAPTER 6

Future Work

There are a number of ways that DEFY could be modified for future use. We

discuss a few of them below.

Stub Caching

We maintained the YAFFS design of storing all metadata in memory while adding

greatly to the size of that metadata with stubs. As a result, DEFY can only han-

dle files up to 2 megabytes in size. This number could be drastically increased by

decreasing the number of stubs in memory. DEFY already stores all of the needed

stubs on the device and in the stub storage area, so the only necessary modification

is adding a better memory manager that manages which stubs are in memory at all

times. Unfortunately, such a change would decrease the performance of DEFY, but

it would also make it much more practical for today’s larger file sizes.

45



Internal Deniable File System

We would have liked to remove the need for an external file system that supported

secure deletion. This modification is straightforward and was left out due to time

constraints. It would require that the top-level stub file was written to special stub

blocks on the file system. Each time a stub was changed, its containing block should

be erased and re-written in a new location. The old block would then need to be

re-written with encrypted random data, just like any other unused block in the file

system. This would ensure that old key data was destroyed. The choice of the next

block to use for a stub block could simply align with the next available block on

the device—provided by the allocator. This would align with our current deniability

model and maintain even device wear.

One drawback of this system is that the blocks that were used to store top-level

stubs would experience slightly more wear than normal blocks. Each time the stub

block is rotated forward, it must be erased and rewritten with random data, which

is one additional write cycle compared to normal data blocks. We must rewrite the

stub blocks because they are encrypted with the level key only.

Other Device Types

The assumptions necessary for a deniable flash file system are more strict than

those for a block-device file system. Indeed, DEFY could be modified to work with

block devices. Such a file system would not receive the benefit of even wear, but it

would be deniable. This modification would be less beneficial if the underlying device

was a disk drive. Disk drives are not designed for random access so the large number

of holes that DEFY creates would be detrimental to read times. This modification

would be useful if the underlying device was still flash memory. An example use case
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is USB sticks, which use a block device layer, but are still flash memory. Note that

in such a situation, DEFY would still need a file system with secure deletion to store

the key file.
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CHAPTER 7

Related Work

Other Deniable File Systems

Anderson, Needham, Shamir

The idea for a plausibly deniable file system was introduced by Anderson et al. [15]

in 1998. They presented two competing constructions. The first was steganographic,

it hid data inside of other valid data. The second hid data inside of a large amount of

random data. Time has shown the second option to be more popular, it is emulated

by the majority of deniable file systems–including DEFY.

Their first design hid data within a valid-looking set of (“cover files”). Each file

in the file system could be reconstructed by XORing certain parts of the cover files

together. How the cover files were superimposed on each other was determined by a

matrix key. For this to work properly, the cover files needed to be much larger than

the hidden files.

The second design placed valid data inside of a large volume of random data.

Each block of data was encrypted before it was added to the device so that it would

48



blend in with the random data. The exact block number where data is stored is

dependent on a pseudo-random number generator that was seeded with the file name

of the data. Each block of data is then encrypted with a level key. Thus, to access a

block of data the user must provide a file name and the level key.

Each new block that is added to the device could overwrite existing data. The

probability of collision is the same as the probability of a collision in the birthday

problem [1]. To mitigate the problem, Anderson et al. duplicate data into multiple

blocks.

McDonald and Kuhn

McDonald and Kuhn released a file system called StegFS. It was based closely on

Anderson’s second construction and the ext2 file system [27]. They did away with

purely pseudo-random block placement and added a block allocation table. This

allowed users to access their files without needing to store file names. The potential

for overwriting still exists in this file system and the authors again chose to mitigate

it using duplicated blocks.

Pang, Tan, and Zhou

Pang, Tan, and Zhou, introduced a deniable file system with an unencrypted

global bitmap of used blocks in the file system [30]. They also named it StegFS.

Their bitmap does leak information about the maximum amount of data that could

be in the file system even if no keys are available. In return, this file system ensures

that files cannot be overwritten. The authors augment their deniability using dummy

blocks and abandoned blocks. As the block names suggest, the file system never

accesses abandoned blocks after they are allocated and it randomly updates dummy
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blocks with random data.

Skillen and Mannan

Mobiflage is a deniable file system for Android devices that was introduced by

Skillen and Mannan [40]. Their file system hides the deniable drive in a standard

encrypted file system. They introduced deniability by placing the start to the deniable

drive somewhere in the third quarter of the drive’s address space. The exact location

was based on a hash of the encryption key.

The system works at the block device layer; thus, when used with flash storage,

the write leveling systems may potentially undermine the deniability of the hidden

filesystem, revealing recent activity on the hidden portion of the drive. Further, their

system only supports one deniability level and cannot be trivially extended to provide

additional levels.

Comparison

It is our belief that DEFY provides a number of features that have not previously

been explored in deniable file systems. We compare the features of DEFY to the

aforementioned other deniable file systems in table 7. We also discuss the features

that we are comparing against, except for those that we already discussed in the

background section.

Number of Deniable Levels

The concept of a deniability level was introduced in previous deniable file systems

implementations [15, 27, 30]. A deniability level is a collection of files that form a
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DEFY Skillen Pang McDonald Anderson:
[40] [30] [27] 1 [15] 2 [15]

Single-Visit Strong ! ! ! ! ! !

Snapshot Strong ! !
Arbitrary No.

of Levels ! ! ! ! !
Authenticated

Encryption !

Zero Data Loss & ! ! * * !

Wear Leveling !
(*) these filesystems experience low but probabilistic data loss

(&) DEFY may experience data loss in specific circumstances (see 4)

Table 7.1: Feature comparison between DEFY and previous deniable file
systems.

sensitivity equivalence class (e.g. love letters vs. trade secrets). Here, as in previous

work, deniability levels form a total order: `0 ≤ `1 ≤ . . . ≤ `h. A user has some se-

cret password to reveal all files at a chosen deniability level. Following a convenience

established in previous work, when revealing a level, all lower levels should also re-

vealed. The system should support an arbitrary number of named deniability levels

that can be created dynamically, rather a fixed number of levels or levels created

exclusively during initialization–both of which impose an artificial restriction on the

system’s use and leave a user vulnerable to coercion by an intelligent adversary.

Overwriting

Data loss occurs when hidden data (unrevealed data at a high deniability level) is

overwritten because the file system is mounted at a lower level—an unfortunate, but

unavoidable characteristic of any deniable file system. The ability or the probability

of a file system overwriting data is entirely dependent on its design. One strategy

to prevent overwriting is to maintain a global list of memory blocks that are free

for writing (not in use by any higher or lower levels); a strategy similar to this is
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employed by Pang et al. [30]. Alone, this strategy undermines plausible deniability:

a single-view adversary learns which blocks are in-use across the system, revealing

if hidden levels exist. The remedy in Pang is to create abandoned blocks, or blocks

that are falsely marked as in-use. This creates plausible deniability, at the expense

of permanently sacrificing capacity. Anderson et al. [15] prevent data loss in their

system through block replication, similarly suffering a significant overhead to prevent

data loss. While the capacity of NAND drives is increasing and prices decreasing, the

cost-per-byte for flash memory still almost double that of hard disk devices, limiting

the appeal of solutions with high storage overheads. What’s more, storage devices

that employ wear-leveling preclude file systems from modifying data in place or at

completely random locations. This entirely excludes data recovery strategies based on

random placement of replicas, or using recovering overwritten blocks from n-out-of-m

threshold-based error correction codes.

Wear Leveling

NAND flash has a limit to the number of times data can be written to a block

before it fails. To delay failure, many devices implement wear leveling, in which

all writes are systematically written to new locations, preventing some blocks from

failing far earlier than others. This has implications for both encrypting and deniable

file systems: wear-leveling mechanisms may persist old version of encrypted data,

providing an adversary with a time-line of changes made to disk, and thus, an ability

to differentiate between claimed and actual disk activity. Wear-leveling undermines

any file system whose security is predicated on the ability to overwrite data. Any

secure file system designed for flash-based storage should be secure and compatible

with drives that either do or do not manage their own wear leveling.
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Easily Deployable

To have the broadest impact, a deniable file system should be easily distributable

and compatible with popular operating systems (e.g. Android and Linux). Using a

loadable kernel module to extend the existing kernel allows for systems enhancements

without rebuilding from source.

53



CHAPTER 8

Conclusion

In this work we proposed the design for a new deniable file system dubbed DEFY.

DEFY is strong against both the snapshot and the single-view adversaries. It provides

wear-leveling, secure deletion, authenticated encryption, multiple deniable levels, and

mitigated data loss. The deniability of DEFY resides in the undecryptable blocks

that are created by the combination of the forward-writing nature of a log-structured

file system and normal user interactions. We built a prototype version of DEFY and

found that it performed comparably to WhisperYaffs—its closest competitor—when

benchmarked with both the FFSB and the IOZone test suites. We believe that this

is a valuable contribution to the existing collection of deniable file systems, and we

propose that it is even strong enough to defend against the snapshot adversary. To

our knowledge there is only one other deniable file system that reaches this level of

security.
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A: Old Design

We document our original vulnerable idea for DEFY below with the hope that it

will not be reattempted in the future.

Our initial idea for DEFY was to use randomly placed dummy blocks to conseal

data. The idea of a dummy block was inspired by the work of Pang et al. [30]. Apart

from that, this version of DEFY is unique. The idea is detailed below along with its

vulnerability.

Design

The chunk allocator in YAFFS assigns writable chunks out of a single block that

is currently in the ”allocating” state. In this design, each time a block was allocated

a random number (including zero) of chunks would be assigned to each active–or

currently opened–level of the file system, including a dummy level. Any chunks

assigned to the dummy level were filled with random data. We allowed the over

levels to use chunks from that block based on their random allocation. The allocator

ordered chunks in the block based on which level they were assigned to, see figure

8.1. If a level needed more chunks, then a new block had to be allocated, which led

to multiple blocks being open for allocation at the same time.

Vulnerability

We believed that randomizing and ordering blocks would create the required ob-

scurity and security for a deniable file system. The user and adversary would always

expect to find a random number of dummy chunks in any one allocation block, priv-

ileged data could then hide in that margin of expected dummy chunks.
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Erase Block

Chunks (bitmap):

L1 L2

L3 L3 D D D D

D D D D D D

L3 L3 L3 L3 L3 L3

L3 L3 L3 L3

Ln == Level n

D == Dummy 
Chunk

Figure 8.1: A possible allocation of chunks in an erase block.

The problem is, if an adversary had a sufficient number of blocks she can look

at the average distribution of blocks to any one level. The adversary would expect

to find an even distribution of the known levels in the file system, if something else

was found, it would be unpleasant for the user. A potential solution to this is to

allocate chunks for all possible levels, but that would severely diminish the available

disk space. We thus determined that this problem could be better solved through

other deniability mechanisms.
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