186 research outputs found
HNF1B and Endometrial Cancer Risk: Results from the PAGE study
We examined the association between HNF1B variants identified in a recent genome-wide association study and endometrial cancer in two large case-control studies nested in prospective cohorts: the Multiethnic Cohort Study (MEC) and the Women's Health Initiative (WHI) as part of the Population Architecture using Genomics and Epidemiology (PAGE) study. A total of 1,357 incident cases of invasive endometrial cancer and 7,609 controls were included in the analysis (MEC: 426 cases/3,854 controls; WHI: 931cases/3,755 controls). The majority of women in the WHI were European American, while the MEC included sizable numbers of African Americans, Japanese and Latinos. We estimated the odds ratios (ORs) per allele and 95% confidence intervals (CIs) of each SNP using unconditional logistic regression adjusting for age, body mass index, and four principal components of ancestry informative markers. The combined ORs were estimated using fixed effect models. Rs4430796 and rs7501939 were associated with endometrial cancer risk in MEC and WHI with no heterogeneity observed across racial/ethnic groups (P≥0.21) or between studies (P≥0.70). The ORper allele was 0.82 (95% CI: 0.75, 0.89; P = 5.63×10−6) for rs4430796 (G allele) and 0.79 (95% CI: 0.73, 0.87; P = 3.77×10−7) for rs7501939 (A allele). The associations with the risk of Type I and Type II tumors were similar (P≥0.19). Adjustment for additional endometrial cancer risk factors such as parity, oral contraceptive use, menopausal hormone use, and smoking status had little effect on the results. In conclusion, HNF1B SNPs are associated with risk of endometrial cancer and that the associated relative risks are similar for Type I and Type II tumors
Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer
Background: Adiposity traits have been associated with risk of many cancers in observational studies, but whether these associations are causal is unclear. Mendelian randomization (MR) uses genetic predictors of risk factors as instrumental variables to eliminate reverse causation and reduce confounding bias. We performed MR analyses to assess the possible causal relationship of birthweight, childhood and adult body mass index (BMI), and waist-hip ratio (WHR) on the risks of breast, ovarian, prostate, colorectal and lung cancers. Methods: We tested the association between genetic risk scores and each trait using summary statistics from published genome-wide association studies (GWAS) and from 51 537 cancer cases and 61 600 controls in the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium. Results: We found an inverse association between the genetic score for childhood BMI and risk of breast cancer [odds ratio (OR)=0.71 per standard deviation (s.d.) increase in childhood BMI; 95% confidence interval (CI): 0.60, 0.80; P=6.5×10-5). We also found the genetic score for adult BMI to be inversely associated with breast cancer risk (OR=0.66 per s.d. increase in BMI; 95% CI: 0.57, 0.77; P=2.5×10-7), and positively associated with ovarian cancer (OR=1.35; 95% CI: 1.05, 1.72; P=0.017), lung cancer (OR=1.27; 95% CI: 1.09, 1.49; P=2.9×10-3) and colorectal cancer (OR=1.39; 95% CI: 1.06, 1.82, P=0.016). The inverse association between genetically predicted adult BMI and breast cancer risk remained even after adjusting for directional pleiotropy via MR-Egger regression. Conclusions: Findings from this study provide additional understandings of the complex relationship between adiposity and cancer risks. Our results for breast and lung cancer are particularly interesting, given previous reports of effect heterogeneity by menopausal status and smoking status.</p
Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer:Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses
Background: Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. Methods and Findings: A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. Conclusions: Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers.</p
Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study
Background: Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S. Methods: As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites. Results: Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only. Conclusions: Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium
Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses.
BACKGROUND: Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. METHODS AND FINDINGS: A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. CONCLUSIONS: Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers.US NIH (Grant ID: R37CA070867), Ingram Professorship, Anne Potter Wilson , National Institutes of Health (Grant IDs: R25CA160056-03, U19CA148065, U19CA148107, U19CA148127, U19CA148537, Cancer Research UK, Prostate Cancer UK, The Institute of Cancer Research, Royal Marsden Biomedical Research Centre, National Institute of Health Research (Grant ID: C5047/A17528)This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pmed.100211
Transethnic insight into the genetics of glycaemic traits: fine-mapping results from the Population Architecture using Genomics and Epidemiology (PAGE) consortium
AIMS/HYPOTHESIS: Elevated levels of fasting glucose and fasting insulin in non-diabetic individuals are markers of dysregulation of glucose metabolism and are strong risk factors for type 2 diabetes. Genome-wide association studies have discovered over 50 SNPs associated with these traits. Most of these loci were discovered in European populations and have not been tested in a well-powered multi-ethnic study. We hypothesised that a large, ancestrally diverse, fine-mapping genetic study of glycaemic traits would identify novel and population-specific associations that were previously undetectable by European-centric studies.
METHODS: A multiethnic study of up to 26,760 unrelated individuals without diabetes, of predominantly Hispanic/Latino and African ancestries, were genotyped using the Metabochip. Transethnic meta-analysis of racial/ethnic-specific linear regression analyses were performed for fasting glucose and fasting insulin. We attempted to replicate 39 fasting glucose and 17 fasting insulin loci. Genetic fine-mapping was performed through sequential conditional analyses in 15 regions that included both the initially reported SNP association(s) and denser coverage of SNP markers. In addition, Metabochip-wide analyses were performed to discover novel fasting glucose and fasting insulin loci. The most significant SNP associations were further examined using bioinformatic functional annotation.
RESULTS: Previously reported SNP associations were significantly replicated (p ≤ 0.05) in 31/39 fasting glucose loci and 14/17 fasting insulin loci. Eleven glycaemic trait loci were refined to a smaller list of potentially causal variants through transethnic meta-analysis. Stepwise conditional analysis identified two loci with independent secondary signals (G6PC2-rs477224 and GCK-rs2908290), which had not previously been reported. Population-specific conditional analyses identified an independent signal in G6PC2 tagged by the rare variant rs77719485 in African ancestry. Further Metabochip-wide analysis uncovered one novel fasting insulin locus at SLC17A2-rs75862513.
CONCLUSIONS/INTERPRETATION: These findings suggest that while glycaemic trait loci often have generalisable effects across the studied populations, transethnic genetic studies help to prioritise likely functional SNPs, identify novel associations that may be population-specific and in turn have the potential to influence screening efforts or therapeutic discoveries.
DATA AVAILABILITY: The summary statistics from each of the ancestry-specific and transethnic (combined ancestry) results can be found under the PAGE study on dbGaP here: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v1.p1
CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk
BACKGROUND: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer (CRC) in women. Our aim was to use a genome-wide gene-environment interaction analysis to identify genetic modifiers of CRC risk associated with use of MHT.
METHODS: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any MHT, oestrogen-only (E-only) and combined oestrogen-progestogen (E+P) hormone preparations. To test for multiplicative interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case-control logistic regression as primary tests. The Cocktail test was used as secondary test.
RESULTS: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and E+P (interaction OR (95% CIs)=0.61 (0.52-0.72), P=4.8 × 10(-9)). The secondary analysis also identified this interaction (Cocktail test OR=0.64 (0.52-0.78), P=1.2 × 10(-5) (alpha threshold=3.1 × 10(-4)). The ORs for association between E+P and CRC risk by rs964293 genotype were as follows: C/C, 0.96 (0.61-1.50); A/C, 0.61 (0.39-0.95) and A/A, 0.40 (0.22-0.73), respectively.
CONCLUSIONS: Our results indicate that rs964293 modifies the association between E+P and CRC risk. The variant is located near CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into downstream pathways of CRC etiopathogenesis
- …