335 research outputs found
Partitioning the impact of environmental drivers and species interactions in dynamic aquatic communities
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Musters, C. J. M., Ieromina, O., Barmentlo, S. H., Hunting, E. R., Schrama, M., Cieraad, E., Vijver, M. G., & van Bodegom, P. M. Partitioning the impact of environmental drivers and species interactions in dynamic aquatic communities. Ecosphere, 10(11), (2019): e02910, doi:10.1002/ecs2.2910.Temperate aquatic communities are highly diverse and seasonally variable, due to internal biotic processes and environmental drivers, including humanâinduced stressors. The impact of drivers on species abundance is supposed to differ fundamentally depending on whether populations are experiencing limitations, which may shift over the season. However, an integrated understanding of how drivers structure communities seasonally is currently lacking. In order to partition the effect of drivers, we used random forests to quantify interactions between all taxa and environmental factors using macrofaunal data from 18 agricultural ditches sampled over two years. We found that, over the agricultural season, taxon abundance became increasingly better predicted by the abundances of coâoccurring taxa and nutrients compared to other abiotic factors, including pesticides. Our approach provides fundamental insights in community dynamics and highlights the need to consider changes in species interactions to understand the effects of anthropogenic stressors.The authors are grateful to B. Schaub of Water Board Rijnland for his help, E. Gertenaar for assistance in the fieldwork, M. Wouterse for DOC measurements, and B. Koese for help with taxonomic identification of macrofaunal samples. CM designed the study, did the statistical modeling and analyses, and wrote the draft paper; OI did field sampling and taxonomic identification and constructed the datasets; OI and HB structured the data; EH, MS, ES, MV, and PvB contributed to the study design and the conceptual improvement of the manuscript; all authors substantially revised the subsequent drafts
The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK
Microplastics are widespread throughout aquatic environments. However, there is currently insufficient understanding of the factors influencing ingestion of microplastics by organisms, especially higher predators such as fish. In this study we link ingestion of microplastics by the roach Rutilus rutilus, within the non-tidal part of the River Thames, to exposure and physiological factors. Microplastics were found within the gut contents of roach from six out of seven sampling sites. Of sampled fish, 33% contained at least one microplastic particle. The majority of particles were fibres (75%), with fragments and films also seen (22.7% and 2.3% respectively). Polymers identified were polyethylene, polypropylene and polyester, in addition to a synthetic dye. The maximum number of ingested microplastic particles for individual fish was strongly correlated to exposure (based on distance from the source of the river). Additionally, at a given exposure, the size of fish correlated with the actual quantity of microplastics in the gut. Larger (mainly female) fish were more likely to ingest the maximum possible number of particles than smaller (mainly male) fish. This study is the first to show microplastic ingestion within freshwater fish in the UK and provides valuable new evidence of the factors influencing ingestion that can be used to inform future studies on exposure and hazard of microplastics to fish
âMind the Gapâ between ecosystem services classification and strategic decision making
Ecosystem services (ES) are increasingly embedded in policy agendas, but if and how policy actors are considering them is not often reported. This study assesses the extent to which ES were considered by key policy actors involved in the strategic decision-making process leading to an innovative large-scale Dutch coastal management project. We analysed retrospective interviews to ascertain which ES were considered and how they were described by policy actors. Over half of the quotes (118/228) and 16 out of the 17 interviewees referred to three broad ES categories, with high degrees of adoption: coastal safety, recreation and cognitive development (learning by doing). The broad terms ânatureâ and âspatial qualityâ were also referenced often (36 times). Our findings suggest that broad, unspecified ecosystem services were adopted highly by the policy actors, while specific ecosystem service categories were rarely considered. Relatable and comprehensible cultural ecosystem services also constituted critical arguments for policy actors in their strategic decision making. We reflect that ambiguous, broad terms can help to garner support and unite efforts across disciplinary and institutional boundaries. For ES to align with relevant aspects of decision making, a âtranslation stepâ between ES research and decision making might be required and ambiguity should be acknowledged.</p
A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa
Background
Assessing adult mosquito populations is an important component of disease surveillance programs and ecosystem health assessments. Inference from adult trapping datasets involves comparing populations across space and time, but comparisons based on different trapping methods may be biased if traps have different efficiencies or sample different subsets of the mosquito community.
Methods
We compared four widely-used trapping methods for adult mosquito data collection in Kruger National Park (KNP), South Africa: Centers for Disease Control miniature light trap (CDC), Biogents Sentinel trap (BG), Biogents gravid Aedes trap (GAT) and a net trap. We quantified how trap choice and sampling effort influence inferences on the regional distribution of mosquito abundance, richness and community composition.
Results
The CDC and net traps together collected 96% (47% and 49% individually) of the 955 female mosquitoes sampled and 100% (85% and 78% individually) of the 40 species or species complexes identified. The CDC and net trap also identified similar regional patterns of community composition. However, inference on the regional patterns of abundance differed between these traps because mosquito abundance in the net trap was influenced by variation in weather conditions. The BG and GAT traps collected significantly fewer mosquitoes, limiting regional comparisons of abundance and community composition.
Conclusions
This study represents the first systematic assessment of trapping methods in natural savanna ecosystems in southern Africa. We recommend the CDC trap or the net trap for future monitoring and surveillance programs
Acute toxicity of organic pesticides to Daphnia magna is unchanged by co-exposure to polystyrene microplastics
Daphnia magna were exposed to two pesticides in the presence or absence of microplastics (300 000 particles mlâ1 1âŻÂ”m polystyrene spheres) and to microplastics alone. The pesticides were dimethoate, an organophosphate insecticide with a low log Kow, and deltamethrin, a pyrethroid insecticide with a high log Kow. Daphnia were exposed to a nominal concentration range of 0.15, 0.31, 0.63, 1.25, 2.5, 5âŻmgâŻlâ1 dimethoate and 0.016, 0.08, 0.4, 2, 5 and 10âŻÂ”gâŻlâ1 deltamethrin. Exposure to polystyrene microplastics alone showed no effects on Daphnia magna survival and mobility over a 72âŻh exposure. In the dimethoate exposures, mobility and survival were both affected from a concentration of 1.25âŻmgâŻlâ1, with effects were seen on mobility from 28âŻh and survival from 48âŻh, with greater effects seen with increasing concentration and exposure time. In deltamethrin exposures, survival was affected from a concentration of 0.4âŻÂ”gâŻlâ1 and mobility from a concentration of 0.08âŻÂ”gâŻlâ1. Effects of deltamethrin on mobility were seen from 5âŻh and on survival from 28âŻh, with greater effects on survival and mobility seen with increasing concentration and exposure time. Contrary to expectations, pesticide toxicity to Daphnia magna was not affected by the presence of microplastics, regardless of chemical binding affinity (log Kow). This therefore suggests that polystyrene microplastics are unlikely to act as a significant sink, nor as a vector for increased uptake of pesticides by aquatic organisms
Recommended from our members
Characterisation model approach for LCA to estimate land use impacts on pollinator abundance and illustrative characterisation factors
This study presents the first approach to characterise relative land use impacts on pollinator abundance for life cycle assessment (LCA). Pollinators make an essential contribution to global crop production and in recent years evidence of declines has raised concerns on how land use, among other factors, affects pollinators. Our novel method assesses land use impacts on pollinator abundance and proposes a new impact category that is compatible with the current framework of life cycle impact assessment (LCIA). While a systematic literature research showed the existence of multiple models that could assess pollinator abundance impacts, their parameterization is too complicated for applications in LCA. Therefore, a simplified method based on expert knowledge is presented. The practical application of the method is illustrated through the connection to, and characterisation of, relevant land use types derived from the widely used LCA database, ecoinvent. The illustrative characterisation factors demonstrate that key differences among land use types can be reflected through the proposed approach. Further development of robust characterisation factors through a larger sample of pollinator abundance estimates, and improvements to the model, such as considerations of spatial differentiation, will contribute to the identification of impacts of agricultural practices in LCA studies, helping prevent further pollinator abundance decline
Global regionalized characterization factors for phosphorus and nitrogen impacts on freshwater fish biodiversity
Inefficient global nutrient (i.e., phosphorus (P) and nitrogen (N)) management leads to an increase in nutrient delivery to freshwater and coastal ecosystems and induces eutrophication in these aquatic environments. This process threatens the various species inhabiting these ecosystems. In this study, we developed regionalized characterization factors (CFs) for freshwater eutrophication at 0.5 Ă 0.5-degree resolution, considering different fates for direct emissions to freshwater, diffuse emissions, and increased erosion due to agricultural land use. The CFs were provided for global and regional species loss of freshwater fish. CFs for global species loss were quantified by integrating global extinction probabilities. Results showed that the CFs for P and N impacts on freshwater fish are higher in densely populated regions that encompass either large lakes or the headwaters of large rivers. Focusing on nutrient-limited areas increases country-level CFs in 51.9 % of the countries for P and 49.5 % of the countries for N compared to not considering nutrient limitation. This study highlights the relevance of considering freshwater eutrophication impacts via both P and N emissions and identifying the limiting nutrient when performing life cycle impact assessments
Effects of Nitrogen Emissions on Fish Species Richness across the Worldâs Freshwater Ecoregions
The increasing application of synthetic fertilizer has tripled nitrogen (N) inputs over the 20th century. N enrichment decreases water quality and threatens aquatic species such as fish through eutrophication and toxicity. However, the impacts of N on freshwater ecosystems are typically neglected in life cycle assessment (LCA). Due to the variety of environmental conditions and species compositions, the response of species to N emissions differs among ecoregions, requiring a regionalized effect assessment. Our study tackled this issue by establishing regionalized species sensitivity distributions (SSDs) of freshwater fish against N concentrations for 367 ecoregions and 48 combinations of realms and major habitat types globally. Subsequently, effect factors (EFs) were derived for LCA to assess the effects of N on fish species richness at a 0.5 degree Ă 0.5 degree resolution. Results show good SSD fits for all of the ecoregions that contain sufficient data and similar patterns for average and marginal EFs. The SSDs highlight strong effects on species richness due to high N concentrations in the tropical zone and the vulnerability of cold regions. Our study revealed the regional differences in sensitivities of freshwater ecosystems against N content in great spatial detail and can be used to assess more precisely and comprehensively nutrient-induced impacts in LCA
Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches
Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evaluation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncorrelated (for P only maps from one group were available). The primary factor explaining the differences between these groups is the use of PFT information combined with remote sensing-derived land cover products in one group while the other group mostly relied on environmental predictors alone. The maps that used PFT and corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by individual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data aggregated to the grid-cell level (R = 0.2â0.6) when processing sPlotOpen in a way that is consistent with the respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was relevant, but considerably smaller than that of the PFT and land cover information. The maps using PFT and land cover information better reproduce the between-PFT trait differences of sPlotOpen data, while the two groups performed similarly in capturing within-PFT trait variation.
Our findings highlight the importance of explicitly accounting for within-grid-cell trait variation, which has important implications for applications using existing maps and future upscaling efforts. Remote sensing information has great potential to reduce uncertainties related to scaling from in-situ observations to grid cells and the regression-based mapping steps involved in the upscaling
- âŠ