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Abstract. Temperate aquatic communities are highly diverse and seasonally variable, due to internal biotic
processes and environmental drivers, including human-induced stressors. The impact of drivers on species
abundance is supposed to differ fundamentally depending on whether populations are experiencing limita-
tions, which may shift over the season. However, an integrated understanding of how drivers structure com-
munities seasonally is currently lacking. In order to partition the effect of drivers, we used random forests to
quantify interactions between all taxa and environmental factors using macrofaunal data from 18 agricultural
ditches sampled over two years. We found that, over the agricultural season, taxon abundance became
increasingly better predicted by the abundances of co-occurring taxa and nutrients compared to other abiotic
factors, including pesticides. Our approach provides fundamental insights in community dynamics and high-
lights the need to consider changes in species interactions to understand the effects of anthropogenic stressors.
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INTRODUCTION

Gaining knowledge from field data on the fun-
damental processes that shape biological com-
munities is a huge challenge, but, if we are to
effectively manage communities under threat,
such knowledge is urgently needed. Many bio-
logical communities exhibit a strong seasonal
variation in species composition and abundance.
For instance, in aquatic communities, most inver-
tebrates are relatively inactive in winter due to
reduced water temperatures. Some species are
present in the form of eggs or pupae that remain
dormant until water temperatures increase in
spring, while adult life stages of other aquatic

taxa seek refuge in organic matter layers or in
adjacent terrestrial habitats (Chadd 2010). Micro-
bial and algae production is present, but low, in
winter (Sommer et al. 1986, Wetzel 2001). In
spring, fauna populations grow in response to
increasing primary production, which is the kick-
off of a seasonal succession in species composi-
tion. Toward summer, population growth slows
down because of intensified intra- and interspeci-
fic interactions (Sommer et al. 1986).
This phenomenon suggests a shift in processes

that regulate the populations of most species,
from processes of growth to processes of species
interactions. Intra- and interspecific interactions
may be dominated by competition for limiting
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resources, leading to bottom-up controlled com-
munities, or by predation and the like (para-
sitism, pathogeny, mutualism, etc.), leading to
top-down-regulated communities (Shurin et al.
2006). In general, competition reduces species
richness, while predation increases species rich-
ness by reducing interspecific competition (Ter-
borgh 2015). While it seems likely that a seasonal
shift occurs in many communities, this funda-
mental phenomenon has to our knowledge not
been addressed at the community level, let alone
quantified.

In addition to these autecological dynamics,
communities are affected by environmental dri-
vers, many of which are related to human activi-
ties such as land use, transport, and industry
(Schwarzenbach et al. 2006, Ormerod et al. 2010,
Halstead et al. 2014). Prevailing ecological con-
cepts indicate that the effects of environmental
drivers on a community will be different depend-
ing on the processes that regulate the popula-
tions of the majority of species (Carpenter et al.
1987, Chase and Leibold 2003, Vellend 2016). For
example, in case of consumer species, human
activities that introduce toxins, such as pesti-
cides, into the environment may affect the vital-
ity of species (Barmentlo et al. 2019) and
therewith has relevance for population growth
rate (and hence likely affect community composi-
tion most when populations are not yet resource-
limited). On the other hand, human activities
that affect resource availability and limitations,
such as fertilization, may directly impact intra-
and interspecific interactions (Scheffer et al.
1993). Environmental drivers not only may
change the timing of the seasonal shift; both
reducing growth rates by toxins and reducing
resource limitations by nutrients may postpone
the shift. They may also change the character of
communities, for example, by changing them
from top-down to bottom-up communities and
thereby reducing their species richness (Scheffer
et al. 1993, Terborgh 2015). While the fundamen-
tal question of how environmental drivers affect
these different communities has long been recog-
nized (Hunter and Price 1992), it has rarely been
explored (but see Lancaster and Ledger 2015).

Understanding how environmental drivers
affect individual species abundances, species
interactions, and their dynamics is critically
needed given the profound role of seasonal

dynamics in community composition and there-
fore also in ecosystem functioning. This requires
quantification of the effects of environmental dri-
vers on the community during the period when
population growth dominates, as well as during
the period when intra- and interspecific interac-
tion dominates. In addition, knowledge about
the timing of the seasonal switch between these
two is essential in managing human influences
on aquatic systems to maintain or restore species
richness. It could, for instance, reveal time win-
dows in which human disturbance is most dam-
aging or when indicator species for specific
human impacts should be monitored. Efforts to
manage human impacts are to date still primarily
governed by trial and error (Terborgh 2015, Hill
et al. 2016).
Thus far, the high diversity of ecological com-

munities and the associated number of potential
interactions (K�efi et al. 2015) have hampered
quantitative analysis. As a consequence, field
studies of seasonality in aquatic systems have
determined changes in productivity, biomass,
species richness, and interactions in a limited
number of taxa or functional groups (Odum
1969, Sommer et al. 1986, Carpenter et al. 1987,
Hill et al. 2016, Leslie and Lamp 2017, Ovaskai-
nen et al. 2017, Little and Altermatt 2018), but
rarely in all species interactions, including inter-
specific competition, of a complete community.
An exception is the study of Lima-Mendez et al.
(2015) who used a relatively new classifying
technique, random forest, developed for machine
learning (Strobl et al. 2009), to show that, in
addition to environmental conditions, species
interactions are important drivers of in marine
plankton communities. Here, we expand on the
random forest method and partition the relative
importance of different drivers to gain funda-
mental ecological insights in community pro-
cesses, articulating the role of interspecific
species interactions therein.
Our method allows further specification of

species interactions by categorizing the species of
the community. Species can be categorized based
on taxonomy or functional traits to show the
interactions within and between higher level
taxa, or between functional groups such as based
on feeding mode. Grouping according to trophic
level will allow assessment of whether a commu-
nity is bottom-up or top-down. This can also be
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used to make a distinction between interactions
within the same trophic level (horizontal interac-
tions), of which competition is the most impor-
tant example, and interactions between species
of different trophic level (vertical interactions),
such as most forms of predation and the like.

We illustrate the applicability of this novel
approach by analyzing a comprehensive dataset
of aquatic ditch macrofaunal samples (Verdon-
schot et al. 2011). This dataset describes a set of
ditches that are exposed to different types of
land uses that create a mosaic of different abi-
otic pressures affecting the adjacent aquatic sys-
tem (Ieromina et al. 2015, Hunting et al. 2016,
Musters et al. 2019). Over the seasons, we
expect to find in the macrofaunal community a
shift in the relative importance of community
processes, from those related to population
growth toward an increased importance of
interspecific interactions. Further, we expect
that the impact of pesticides is greatest in the
early seasons, when population growth domi-
nates, so that the community might be sensitive
to the vitality disturbing effect of these sub-
stances. In contrast, the impact of nutrients,
limiting the biomass of food items, will be
greatest in the late seasons when populations
are at their peak and competition between spe-
cies might be high.

METHODS

Research area
A detailed description of the research area,

macrofaunal sampling strategy, and taxonomic
identification level for each group is given in Ier-
omina et al. (2015, Musters et al. 2019). Briefly,
the research area of ca. 1600 ha contains a net-
work of ditches and is located in the bulb growing
region of the Netherlands (center: Lat: 52°15055.66″,
Lon: 4°28027.94″). There is a small elevational
gradient in the area: Elevation decreases gradu-
ally from a dune nature reserve (highest site is
located at 4.26–4.50 m above sea level) toward
polders consisting of bulb fields and pastures
(lowest site is located at 0.49–0.25 m below sea
level). The water flows mainly in a southwest
direction. The nature reserve is situated in the
northwestern part of the polder and is not con-
taminated from the north and northwest side.
Previous research has shown clear differences in

human-affected influences in the area: from
lower contamination loadings of agrochemicals
at the higher elevation sites neighboring the nat-
ure reserve to increased contamination at lower
sites located near the agricultural parcels (Iero-
mina et al. 2015).

Data collection
A total of 18 sites in the freshwater ditch sys-

tem were sampled repeatedly in the period
April–November 2011–2012 with a time interval
of 1–2 months: Ten sites were located in ditches
next to flower bulb fields, four ditches next to
grasslands, and four sites located in watersheds
of the nature reserve close to the flower bulb
area. The depth of the ditches was at least 0.7–
1 m, selected ditches did not run dry during the
year, and water flow was generally low.
Biotic samples were collected using a dipping

net dragged over a total length of 5 m using a
multi-habitat sampling strategy (Stowa, 2014).
All animal specimens collected were taken to the
laboratory and identified to the lowest taxonomic
level feasible (OTU, hereafter called taxon). These
included aquatic macroinvertebrates and small
fishes. For summarizing our results, we grouped
the taxa in some cases into fishes, insects, crus-
taceans, mollusks, and other invertebrates.
Floating macrophyte cover (Macroph) was

estimated as a proxy for habitat structure. The
following abiotic parameters were measured:
pH, temperature (Temp, °C), dissolved oxygen
(DO, mg/L), and dissolved organic carbon (DOC,
mg/L). Measurements of dissolved nutrient con-
centrations (phosphate (PO3�

4 ), nitrite (NO�
2 ),

nitrate (NO�
3 ), together indicated as Nutr) and

pesticides commonly applied in bulb fields
(chlorpropham, pirimiphos-methyl, tolclofos-
methyl, carbendazim, ethiofencarb, imidaclo-
prid, isoproturon, imazalil, methiocarb, and
prochloraz; together indicated as Pest) were
determined in the OMEGAM laboratory (Ams-
terdam, the Netherlands) using standard proto-
cols. At most locations, pesticide concentrations
above the detection threshold were found. Most
insecticides have environmental quality stan-
dards below detection thresholds and were
therefore high enough to expect an induction of
effects. Ethiofencarb and methiocarb were
excluded from further analyses because the con-
centrations were equal in all samples. The
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temporal changes in all abiotic parameters and
the results of tests of differences between months
are given in the Supporting Information
(Appendix S1: Fig. S1, Table S1).

To differentiate seasonal effects among func-
tional groups, we defined functional group
based on feeding mode as retrieved from the
online database http://www.freshwaterecology.
info (accessed in the years 2012–2014) supple-
mented by literature available through the Web
of Science (http://apps.webofknowledge.com/).
Feeding mode included seven modalities: predat-
ing, grazing, shredding, filter feeding, gathering,
deposit feeding, and parasite type of feeding.
The latter two modalities were only observed in
low quantities and therefore not shown visually
in our figures for clarity. If a taxon was character-
ized by one trait modality, this modality was
assigned a coefficient of 1, and the other modali-
ties of this trait were assigned 0. If a taxon was
characterized by more than one trait modality,
each of these modalities was assigned a coeffi-
cient ranging from 0 to 1, expressing the relative
occurrence of the given modality. For each sam-
ple, the relative contribution of each feeding
mode was derived by weighting feeding mode
estimates for each taxon by their individual bio-
mass (also obtained from http://www.freshwate
recology.info) and the abundance of the given
taxon within the sample. This weighting avoids
unduly impacts of small and rare taxa on com-
munity trait expressions and concurs to the bio-
mass ratio hypothesis (Grime 1998). The changes
in biomass, abundances, number of taxa, and
feeding modalities over time and the results of
tests of differences between months are given in
Appendix S1: Figs. S2–S5, Tables S2–S4.

Analyses of seasonal data
Our methodological framework for analyzing

differences between seasons includes four basic
steps (Fig. 1). Each sample, collected at a given
site on a given date, was considered a single
observation in our analyses (step 1 in Fig. 1).
The number of samples per month over two
years is May, 30 biotic and 20 abiotic samples;
June, 13 biotic and 9 abiotic samples; July, 28
biotic and 11 abiotic samples; September, 30
biotic and 19 abiotic samples; October, 14 biotic
and 8 abiotic samples; and November, 30 biotic
and 18 abiotic samples. To identify the most

important drivers that explain the abundance of
each taxon in the community, we used recursive
partitioning, more specifically random forests
(Breiman 2001, step 2 in Fig. 1). Random forests
consist of a large number of decision trees. In
our case, these were regression trees. Each tree
uses a random subset of samples and predictor
variables as a learning set. Using random forests
instead of a single regression tree prevents over-
fitting (Breiman 2001, Strobl et al. 2009). Ran-
dom forests are known to be a superior classifi-
cation technique (Fern�andez-Delgado et al.
2014), because they include non-linear relation-
ships between the predictor variables and the
response variable (here the abundance of a
taxon). In addition, statistical interactions
between predictor variables, where the relation-
ship between the predictor variable and the
response variable depends on the values of
another predictor variable, are included, since
on every node it is decided which predictor
variable and which value of that predictor
should be used for classifying the remaining set
of cases (Strobl et al. 2009). To ensure that our
analyses were not biased by extremely large
abundances for some taxa, and zeroes in others,
we applied a Hellinger transformation on all
abundances (Borcard et al. 2011).
Our analysis deviates in important aspects

from the approach recently outlined by Ovaskai-
nen et al. (2017). First of all, our data do not need
to meet the assumptions of regression analyses,
such as linearity and normal distribution of
residuals. Secondly, Ovaskainen et al. (2017) use
a small number of community-level drivers only.
Lastly, Ovaskainen et al. (2017) use time series. A
benefit of this approach is that the causality of
the interactions can be convincing and intraspeci-
fic interactions are included. We do not explicitly
consider time series in our analysis. Instead, our
approach allows for estimating interspecific
interactions based on the co-occurrence of the
taxa at different locations at one moment in time,
thus enabling the study of changes in interac-
tions over time.
The efficiency of a random forest to predict the

abundance of a taxon may depend on the ability
of the method to distinct random effects from
real effects and on the number of samples it has
as a learning set. To study the relationship
between the number of samples and the
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Fig. 1. Flowchart of analysis per season. See text for extensive explanation.
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outcomes of our data analysis, we used a pre-
sent–absent dataset of biotic samples from differ-
ent locations in our research area collected in two
other years (viz. 2013–2014), in a limited period
of time within the year (viz. April–May). Each
location was sampled once a year. This analysis
(described in Appendix S2: Fig. S1) shows that
our random forest analysis indeed depends on
sample size and that the sample size should be
higher than 25 to attain predictor variables that
have predictive power higher than zero (Musters
and van Bodegom 2018). It also shows that our
data analysis does not predict any taxon to be
present with a chance of deviating from zero in
case of a randomized dataset of 206 samples. The
constraint on the number of samples limited the
temporal resolution of our analysis. As an alter-
native for an analysis per month, we created a
moving window, that is, we combined the sam-
ples of three sequential months, pooled over two
years, which yields four points in time, four sea-
sons, for our analysis: spring (May, June, July; 40
samples), spring–summer (June, July, September;
39 samples), summer–autumn (July, September,
October; 38 samples), and autumn (September,
October, November; 45 samples). We consider
pooling over two years justified, because we
have no reasons to believe that the shift in the rel-
ative importance of community processes will be
different between the years. However, we added
year to our predictor variables to correct for dif-
ferences between years. Our moving average
approach shows the changes between seasons,
but cannot be used to statistically test those dif-
ferences, because the observations per season are
overlapping, and therefore, the results per season
are not statistically independent. We ignored the
slight difference in sample size, after checking
that this did not affect the interpretation of our
results when focusing on changes over time
(Appendix S3: Fig. S1).

The predictor variables per season were the
abundances of all taxa minus the taxon of which
the abundance was to be predicted, all chemistry
variables, taxon richness per sample, land use of
sample site (flower bulb growing, grassland, or
nature reserve), and month and year of sampling
(2011 or 2012), resulting in 134 predictor variables
in spring, 132 in spring-summer, 126 in summer–
autumn and 123 in autumn. Missing values were
imputed with the function rfImpute() of the

randomForest package of R (Cutler et al. 2007)
using 500 trees and 5 iterations. This function
replaces the missing value with the value of the,
according to the random forest, closest other
sample.
The difference between the predicted abun-

dance of each taxon in each sample based on all
predictor variables as determined by the random
forests and the actual abundance can be regarded
as a residual. Hence, an analogue of R2, that is,
the proportion of the variance explained by the
random forest, hereafter called R2, can be calcu-
lated (Ellis et al. 2012). Furthermore, the power
of a predictor variable to predict a taxon’s abun-
dance can be estimated by calculating its impor-
tance. This is done by comparing the prediction
accuracy of random forests with the actual vs.
randomly permuted values of that predictor vari-
able. The decrease in prediction accuracy is a
measure of the importance of that predictor
(Strobl et al. 2009). However, it has been shown
that this measure is biased toward correlated
predictors (Strobl et al. 2007). Therefore, the
alternative measure of importance called the con-
ditional importance and developed to solve this
problem by conditional permutation, was used,
that is, the importance under the condition that
all other predictor variables have a constant
value (Strobl et al. 2008). We regard each condi-
tional importance of a taxon for predicting
another taxon as an estimate of the unidirectional
interaction between the two taxa. So, the condi-
tional importance of taxon A found in the ran-
dom forest of taxon B can be regarded as the
predictive power of taxon A for predicting the
abundance of taxon B. The opposite direction,
the predictive power of taxon B for predicting
the abundance of taxon A, is the conditional
importance of taxon B found in the random for-
est of taxon A. The contributions of the predictor
variables per taxon can be averaged over all taxa,
that is, over the complete community (Ellis et al.
2012). This procedure assumes that the sampling
sites differ in their values of predictor variables
and abundance of the taxa, but that each taxon
can be present at any of the sampling sites, and
that the effects of dispersal and order of arrival
can be ignored (Little and Altermatt 2018).
Indeed, our research area is so small and the
sampling sites are so well connected, that the dis-
tribution of our taxa is not spatially delimited
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(Viana et al. 2015, Musters et al. 2019). The con-
ditional random forests and importance were cal-
culated with the party package of R (Hothorn
et al. 2006, Strobl et al. 2007, 2008). All default
settings were kept, except for the number of
trees, which was set to 500 and the number of
predictor variables tested per node, which was
set to the square root of the total number of pre-
dictors as recommended by Strobl et al. (2009).
Each random forest was run 10 times in order to
assess the variability in the outcomes due to the
random procedures.

Next, for each taxon of the community, the con-
ditional importance of each predictor variable can
be expressed as the part of the R2 of that taxon
that is explained by that predictor variable (Ellis
et al. 2012), which we will call the partial R2 (step
3 in Fig. 1). We used the formulas (1) to (3) of Ellis
et al. (2012) for calculating R2 per predicted taxon
and the partial R2 per predictor variable. Negative
values of both can occur due to the random proce-
dures of random forests (Strobl et al. 2009, Mus-
ters and van Bodegom 2018). The minimum
values of the negative R2 are indicative for the
range within which the random forest has no pre-
dictive power. So, we replaced all R2 and partial
R2 lower than the absolute minimum value by
zero.

Finally, after analysis, to illustrate and summa-
rize our results (step 4 in Fig. 1), we summed the
partial R2 of the predictor variables within the fol-
lowing groups of variables: Biotics (all taxa, taxo-
nomic richness, macrophytes), Nutrients
(phosphorus, nitrite, nitrate), Pesticides (all pesti-
cides), Other chem (dissolved oxygen [DO], Dis-
solved organic carbonates [DOC], pH), and Other
abiotics (land use, temperature, month, and year).
Since these groups differ in the number of predic-
tor variables, the summed partial R2 per group will
also differ, but this is no problem because we are
interested in the effect of the main drivers, that is,
the total effect of the group of predictor variables,
on the community. All analyses were conducted in
R 3.3.2 (R Development Core Team 2017).

RESULTS

Taxonomic alpha diversity hardly changed
over the seasons, while gamma diversity
decreased slightly (Fig. 2a). A decrease in
gamma diversity over the months was found in

both sampling years (Appendix S1: Fig. S5b).
Taxonomic composition changed in that the
number of fishes and insects decreased and mol-
lusks increased over the months (Appendix S1:
Fig. S5c). For 54–72 taxa (around 60% of the
taxa), the random forest had a predictive power
(R2) higher than zero (Fig 2b). We further refer to
these as the predicted taxa. These are taxa of
which the abundance is predicted by at least one
of the predictor variables, being both the other
taxa and the abiotic factors. The number of pre-
dicted taxa was lowest in summer–autumn
(Fig. 2b). About 25% of the taxa had a partial R2

for predicting at least one other taxon higher
than zero. We refer to these as the predictor taxa.
These are taxa of which the abundance predicts
at least one other taxon. The highest R2 found
among the predicted taxa increased over the sea-
sons (Fig 2c).
The best explained taxa varied by season

(Fig. 3): Crustaceans are well explained in
autumn and fish in spring and summer–spring,
while mollusks are best explained in all seasons
(Fig. 4a). Divided into functional groups, the
grazers (dominated by mollusks) were best
explained, and increasingly so over the seasons.
The filter feeders and the shredders were not as
well explained, but the differences between func-
tional groups were small (Fig. 4b).
The explanatory power of different sets of pre-

dictor variables for the community as a whole,
expressed as partial R2, changed over the seasons
(Fig. 5). In all cases, land use was a dominant
predictor, that is, within the top 5 of predictors,
as was one of the time variables (year or month).
Further, of the nutrients, phosphate was the most
important predictor. Only in spring one pesticide
appeared as a dominant predictor, namely the
fungicide carbendazim. DOC, DO, and pH were
important in spring and remained relatively
important over the seasons, though less so than
in spring.
The importance of different groups of predic-

tors changed over the seasons (Fig. 6a;
Appendix S3: Fig. S2 presents the same informa-
tion, but without grouping the partial R2 of most
abiotic drivers). The set of biotic predictors, that
is, species interactions, were relatively important
for explaining the taxa abundances, and this
importance increased over time. Nutrients were
less important as a predictor, but their
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Fig. 2. (a) Taxonomic diversity; (b) predicted taxa (taxa that had an explained R2 > 0) and predictors (taxa that
had a partial R2 > 0 for predicting the abundance of at least one other taxon); (c) the mean R2 and the highest R2

of predicted taxa. The error bars represent the 95% confidence interval based on 10 sets of random forests.
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Fig. 3. The mean explained variance of the abundance of the taxa with an R2 > 0.05 in the four seasons. The R2

 ❖ www.esajournals.org 9 November 2019 ❖ Volume 10(11) ❖ Article e02910

MUSTERS ET AL.



importance also increased over time. Pesticides
were relatively unimportant and decreased in
importance over time. The other chemical and
abiotic factors remained relatively important
over time. In general, this is also true when look-
ing at the separate taxonomic groups and feed-
ing mode (Appendix S3: Figs. S3, S4).

To show the relative importance of groups of
taxa in the species interactions, we summarized

the partial R2 of the taxa, grouped by taxonomy
and by feeding mode (Fig. 6b, c, respectively).
Insects and mollusks as groups were important
predictors of the taxa abundances and the impor-
tance of the mollusks as predictors increased
over time. Grazers, which are mainly mollusks
(more specifically gastropods), were clearly the
most important functional group of the commu-
nity and its importance increased over the season

Fig. 4. Seasonal change in average variance explained of the abundance of taxa according to their taxonomic
group (a) and feeding mode (b). The error bars are the 95% confidence interval based on 10 sets of conditional
random forests.

was averaged over 10 conditional random forests. Colors indicate the taxonomic group: blue: fish; red: insects;
pink: crustacea; purple: mollusks; and light blue: other taxa.

(Fig. 3. Continued)
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Fig. 5. The mean partial R2 of the predictor variables with a partial R2 > 0.0005. The partial R2 was averaged
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(Fig. 6c). The important role of the grazers in
explaining abundances of other functional
groups is illustrated in the interaction webs in
Fig. 7. The interaction webs illustrate that graz-
ers were the most important predictors for all
functional groups, including the grazers them-
selves, which means that some grazing taxa pre-
dicted the abundance of other grazing taxa. Filter
feeders predict themselves partly only in spring.
No clear trends were visible in the other groups
but the predators stood out in being unimportant
predictors, especially in spring–summer and
summer–autumn, and they hardly predict them-
selves (Fig. 7).

Because the importance of a group of predictor
variables highly depends on the number of vari-
ables per group—the partial R2 are summed—
we present the average partial R2 per groups of
predictor variables in the Supplementary Infor-
mation (Appendix S3: Fig. S5). These results
show that an average biotic predictor was rela-
tively unimportant as compared to a nutrient, a
chemical other than a pesticide and other abiotic
predictors (Appendix S3: Fig S5a).

DISCUSSION

In this study, we developed and present an
approach based on random forests to analyze the
seasonal change in an aquatic community in
Dutch ditches to partition the effects of a multi-
tude of driving factors on the abundance of each
of the taxa in the community. Our results show
how the predictive power of drivers of aquatic
ditch communities changes within the agricul-
tural growing season: Early in the season, the
community is already regulated by species inter-
actions, and as the season progresses, it transi-
tions toward being more strongly regulated by a
combination of species interactions and nutrients
later in the season. In other words, there is no
strict switch between processes, from dominated
by population growth toward dominated by spe-
cies interactions, across seasons but rather an
intensification of bottom-up control. This could

be a consequence of our approach of working
with overlapping seasons.
Already in spring, we find that the community,

in terms of taxon abundances, is mainly
explained by the abundances of co-occurring
taxa. We regard this as indicating direct and indi-
rect interspecific interactions, although we
should stress that co-occurrence may also be
explained by common drivers among taxa. Our
result is in accordance though with the results of
a study into the relative importance of the envi-
ronment vs. species interactions in marine plank-
ton (Lima-Mendez et al. 2015). The importance of
pesticides for explaining the abundances of taxa,
that is, the composition of the community, is low,
even in spring—at the peak of their importance.
The low impact of pesticides can be regarded as
surprising given the high and persistent pesticide
loads in parts of the area due to the flower bulb
industry (Hunting et al. 2016, Barmentlo et al.
2018; http://www.pesticidesatlas.nl), although it
may also suggest that the community is well-
adapted to pesticides due to long-term exposure,
so that very sensitive taxa may be missing from
the area. The decrease in importance over the sea-
sons up to early autumn is also exhibited in the
other chemical predictors, namely pH, DO, and
DOC. When lumping pesticides and the other
chemicals, the suggestion that these drivers
become less important over the seasons is even
stronger (Appendix S3: Fig. S6). The reverse is
true for the importance of other taxa as predic-
tors, which increases over the season, suggesting
that the importance of interactions between taxa
increases over time. This is also true for the
importance of the nutrients (Fig. 6a.;
Appendix S3: Fig. S2). The increase in average
and highest R2 per taxon over time (Fig. 2) as
well as the decreased dissimilarity between sam-
ples (Musters et al. 2019) coincides with this tran-
sition, reinforcing the idea that the community
becomes more strongly regulated over time,
either by life histories of taxa, nutrients, or both.
Concerning the predictive power of taxa, we

find a marked difference in the importance of the

over 10 conditional random forests. Colors indicate the predictor group: green, biotics; light green, nutrients;
orange, pesticides; light orange, other chemicals; and gray, other abiotics.

(Fig. 5. Continued)
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Fig. 6. Seasonal change in community importance of the groups of predictor variables (a), and taxa according
to their taxonomic group (b) and feeding mode (c). The error bars are the 95% confidential interval based on 10
sets of conditional random forests.
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different functional groups. Predators, which
constitute on average 6.7% of the total biomass,
had the lowest explanatory power (Fig. 7). This
observation, together with the fact that the rela-
tive biomass of predators consistently decreases
over time (Appendix S1: Fig. S4), suggests that
the change toward stronger regulation of the
community over time is not due to an increasing
importance of top-down regulation. Instead, the
community seems to be bottom-up regulated,
with grazed periphyton and epiphytes at its
base. The grazers in this system (mainly mol-
lusks, dominated by gastropods) become increas-
ingly important over the season. The importance
of shredders and filter feeders, which is less than
that of the grazers, also seems to increase over
time, at least up until early autumn (Fig. 6c). This

might coincide with an increase in importance of
the crustaceans. Insects form an important
group, in terms of the number of taxa in this
group, but on average an insect taxon is a less
important predictor than an average mollusk or
crustacean (Appendix S3: Fig. S5b). Further, as
the season progresses, nutrients become more
important as predictors, which again indicates
an increase over time of the importance of bot-
tom-up processes for the community.
Although the abundance of ~60% of the taxa is

predicted by the random forests, only ~25% of the
taxa participate in these predictions (Fig. 2b). This
suggests that only a limited number of taxa shape
the community and that about 40% of the taxa are
governed either by drivers that are not captured in
our predictor variables or by neutral processes,

Fig. 7. Interactions between functional groups per season. Indented: predicting. Non-indented: predicted.
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that is, by migration or reproduction that are inde-
pendent of abiotic factors or interactions with
other species (Hubbell 2001). However, as was sta-
ted by Pimm (2002), the better one looks at a com-
munity, the more interactions one sees. Or, in
statistical terms, the number of predicted taxa and
predictor taxa will depend on the sample size of
the study (Appendix S3: Fig. S2.1b), so that these
percentages will probably be study-specific. Dig-
ging deeper into the interspecific interactions, we
find that horizontal interaction is a dominant form
of species interaction. This is most obvious for the
grazers and the shredders—both are strongly pre-
dicted by abundances of other taxa within the
same functional group (Fig. 7)—but less so for the
other functional groups. Competition is the obvi-
ous type of interaction to think of, and the impor-
tance of this type of interaction increases over
time. Stronger competition is supposed to lead to
lower species richness (Terborgh 2015), of which
we observe a signal in the decrease in gamma
diversity (Fig. 2). Our results also show that other
types of interactions occur. Fish, for example, are
explained quite well, but do not predict the abun-
dances of other taxa (Fig. 4a vs. 6b). The same can
be said about predators (Fig. 4b vs. 6c). The abun-
dance of the taxa in these groups is thus explained
by vertical interactions while competition does not
seem to play a significant role for these groups.
Interestingly, filter feeders show clear competition
in spring only, which indicates that the food of fil-
ter feeders, algae and small organic particles, is rel-
atively abundant in the other seasons.

This all being said, we must acknowledge that
the R2 per taxon was usually low and never
exceeded 0.21 (Fig. 3). Low percentages of
explained variance are quite common in studies
of macroinvertebrates in aquatic systems (Leslie
and Lamp 2017, Little and Altermatt 2018). As a
consequence, partial R2s are also small, even
though they are non-zero, so that the differences
we found between seasons are actually small.
The warning of Carpenter et al. (1985) against
using statistics to find cause-and-effect relation-
ships is still valid. For example, our method
based on co-occurrence is unable to detect
intraspecific interactions, but may reflect indirect
interactions between species in communities
(Chase and Leibold 2003, Vellend 2016), and may
miss time lags between predictor and response

variables (Evans et al. 2018). However, random
forests at least give us the opportunity to quan-
tify relationships between taxa abundances and
between taxa abundances and environmental
factors in one analysis, which is relatively new in
ecology. Hence, our results should not be
regarded as more than indications for the inter-
pretations that we present here.
Our reservations aside, the proposed approach

is promising as it allows identifying seasonal
dynamics in the role of drivers governing tem-
perate freshwater communities. We observed an
intensification of bottom-up control by increased
effects of nutrients and species interactions on
taxa abundances over the growing season. This
observed shift is particularly relevant since it is
not considered in studies assessing the hazards
and risks of anthropogenic stressors. As such, the
timing of shifts may create opportunities for
management. For example, our results suggest
that for the conservation of aquatic invertebrate
communities, pesticides should at least not be
applied in early spring. Our results highlight the
need for efforts to monitor and better quantify
and understand the diversity and health of the
environment accounting for the dynamic nature
of communities and their drivers.
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