41 research outputs found

    MAPPIT analysis of the early events in Toll-Like receptor signalling

    Get PDF
    Vertebraten bezitten een ingenieus verdedigingssysteem waarmee ze zich wapenen tegen het constante gevaar van invasieve pathogenen. Het immuunsysteem bij zoogdieren kan onderverdeeld worden in een adaptieve en een aangeboren respons. De adaptieve immuniteit is gebaseerd op clonale expansie van T and B lymphocyten die antigen-specifieke receptoren expresseren. Door deze clonale selectie en expansie is de adaptieve respons pas volledig operationeel drie tot vijf dagen na infectie. De aangeboren respons daarentegen vormt de eerstelijnsdefensie tegen pathogenen en is daarom essentieel om de infectie onder controle te houden tot de adaptieve respons geactiveerd wordt. De aangeboren immuniteit maakt gebruik van een gelimiteerde set aan pathogeen-herkennende receptoren waarvan de familie van de Toll-Like receptoren (TLRs) de belangrijkste zijn. TLRs herkennen een brede waaier aan bacteriële en virale structuren zoals lipopolysaccharide, dsRNA of bacterieel DNA. Deze structuren worden vaak pathogeen-geassocieerde moleculaire patronen of PAMPs genoemd. PAMPs zijn essentieel voor het overleven en de replicatie van deze pathogenen en zijn daarom onveranderd gebleven doorheen de evolutie. Herkenning van een pathogen door TLRs leidt tot de productie van pro-inflammatoire cytokines. Deze cytokines activeren de aangeboren immuuncellen zoals macrofagen en neutrofielen. De TLRs zijn bovendien ook betrokken bij de activatie en modulatie van de daaropvolgende adaptieve immuunrespons. Echter, ongepaste en overmatige activatie van de TLR signaalweg leidt tot excessieve inflammatie wat vaak enorm schadelijk is. Daarom is de TLR signaalweg strikt gereguleerd. Verscheidene modulatoren zijn beschreven die ofwel interfereren in ligand binding, ofwel de receptorexpressie beïnvloeden ofwel de intracellulaire signaalweg moduleren. Dit werk richt zich voornamelijk op de initiële stappen van de TLR signaalweg. Daarbij zijn vier adaptor molecules betrokken: MyD88, Mal, Trif and Tram. Verschillende TLRs gebruiken verschillende combinaties van adaptoren, wat gedeeltelijk de ligand specifieke respons kan verklaren. Door gebruik te maken van MAPPIT (Mammalian Protein-Protein Interaction Trap), een twee-hybride methode die in ons laboratorium werd ontwikkeld, creëerden we een TLR-adaptor interactiemap. Bovendien toonden we aan dat Mal een brugfunctie vervult in TLR2 en TLR4 signalisatie, door MyD88 naar de geactiveerde receptor te derigeren. We identificeerden CIS, een lid van de SOCS proteïne familie, als een mogelijke regulator van de MyD88-afhankelijke signaalweg en toonden aan dat de bindingsmodaliteiten van CIS verschilden tussen receptor en MyD88 interactie

    The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement

    Get PDF
    Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting

    In Vivo Analysis of the Role of O-Glycosylations of Von Willebrand Factor

    Get PDF
    The objective of this project was to study the function of O-glycosylations in von Willebrand factor (VWF) life cycle. In total, 14 different murine Vwf cDNAs mutated on one or several O-glycosylations sites were generated: 9 individual mutants, 2 doublets, 2 clusters and 1 mutant with all 9 murine glycosylation sites mutated (Del-O-Gly). We expressed each mutated cDNA in VWF deficient-mice by hydrodynamic injection. An immunosorbent assay with Peanut Agglutinin (PNA) was used to verify the O-glycosylation status. Wild-type (WT) VWF expressed by hepatocytes after hydrodynamic injection was able to bind PNA with slightly higher affinity than endothelial-derived VWF. In contrast, the Del-O-Gly VWF mutant did not bind PNA, demonstrating removal of O-linked glycans. All mutants displayed a normal multimeric pattern. Two mutants, Del-O-Gly and T1255A/T1256A, led to expression levels 50% lower than those induced by WT VWF and their half-life in vivo was significantly reduced. When testing the capacity of each mutant to correct the bleeding time of VWF-deficient mice, we found that S1486A, T1255A, T1256A and the doublet T1255A/T1256A were unable to do so. In conclusion we have shown that O-glycosylations are dispensable for normal VWF multimerization and biosynthesis. It also appears that some O-glycosylation sites, particularly the T1255 and T1256 residues, are involved in the maintenance of VWF plasma levels and are essential for normal haemostasis. As for the S1486 residue, it seems to be important for platelet binding as demonstrated in vitro using perfusion experiments

    Cleavage of von Willebrand Factor by Granzyme M Destroys Its Factor VIII Binding Capacity

    Get PDF
    Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF

    MAPPIT analysis of TLR adaptor complexes

    Get PDF
    AbstractToll-like receptors (TLRs) are crucial components of the innate immune system, coupling pathogen recognition to a cellular response. We used the MAPPIT mammalian two-hybrid technique to investigate protein–protein interactions in the early steps in TLR signalling. A partial TLR-adaptor interaction map was constructed confirming several known but also documenting novel interactions. We show that the TLR adaptor Mal is critical for linking Myeloid Differentiation primary response protein 88 (MyD88) to TLR2 and TLR4. Analysis of the contributions of the different sub-domains of MyD88-adaptor-like protein (Mal) and MyD88 in adaptor homo- and hetero-dimerisation provides an initial mechanistic insight in this bridging function of Mal

    MAPPIT (Mammalian Protein-Protein Interaction Trap) analysis of early steps in Toll-like receptor signalling

    No full text
    The mammalian protein-protein interaction trap (MAPPIT) is a two-hybrid technique founded on type I cytokine signal transduction. Thereby, bait and prey proteins are linked to signalling deficient cytokine receptor chimeras. Interaction of bait and prey and ligand stimulation restores functional JAK (Janus kinase)-STAT (signal transducers and activators of transcription) signalling, which ultimately leads to the transcription of a reporter or marker gene under the control of the STAT3-responsive rPAP1 promoter. In the subsequent protocol, we describe the use of MAPPIT to study early events in Toll-like receptor (TLR) signalling. We here demonstrate a "signalling interaction cascade" from TLR4 to IRAK-1

    Identification of interaction sites for dimerization and adapter recruitment in Toll/interleukin-1 receptor (TIR) domain of Toll-like receptor 4

    No full text
    Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization

    The C-terminus of CIS defines its interaction pattern

    No full text
    Proteins of the SOCS (suppressors of cytokine signalling) family are characterized by a conserved modular structure with pre-SH2 (Src homology 2), SH2 and SOCS-box domains. Several members, including CIS (cytokine-inducible SH2 protein), SOCS1 and SOCS3, are induced rapidly upon cytokine receptor activation and function in a negative-feedback loop, attenuating signalling at the receptor level. We used a recently developed mammalian two-hybrid system [MAPPIT (mammalian protein–protein interaction trap)] to analyse SOCS protein-interaction patterns in intact cells, allowing direct comparison with biological function. We find that, besides the SH2 domain, the C-terminal part of the CIS SOCS-box is required for functional interaction with the cytokine receptor motifs examined, but not with the N-terminal death domain of the TLR (Toll-like receptor) adaptor MyD88. Mutagenesis revealed that one single tyrosine residue at position 253 is a critical binding determinant. In contrast, substrate binding by the highly related SOCS2 protein, and also by SOCS1 and SOCS3, does not require their SOCS-box
    corecore