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Abstract Toll-like receptors (TLRs) are crucial components of
the innate immune system, coupling pathogen recognition to a
cellular response. We used the MAPPIT mammalian two-hybrid
technique to investigate protein–protein interactions in the early
steps in TLR signalling. A partial TLR-adaptor interaction map
was constructed confirming several known but also documenting
novel interactions. We show that the TLR adaptor Mal is critical
for linking Myeloid Differentiation primary response protein 88
(MyD88) to TLR2 and TLR4. Analysis of the contributions of
the different sub-domains of MyD88-adaptor-like protein
(Mal) and MyD88 in adaptor homo- and hetero-dimerisation
provides an initial mechanistic insight in this bridging function
of Mal.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

One of the first steps in pathogen clearance is the activation

of signalling pathways by Toll-like receptors (TLRs). At pres-

ent, 10 TLRs are identified in the human genome. Typical

TLR ligands are bacterial lipopolysaccharide (LPS), recogni-

sed by TLR4 [1], bacterial lipopeptides (TLR2) [2], double

stranded RNA (TLR3) [3], flagellin (TLR5) [4] and CpG mo-

tifs in DNA (TLR9) [5]. Next to ligand binding, adaptor mol-

ecules are recruited to the receptor through homotypic TIR–

TIR (Toll/IL-1 receptor domain) domain interactions.

MyD88 (Myeloid Differentiation primary response protein

88) was the first adaptor to be described [6], and is thought

to be used by every TLR except TLR3. Subsequently, three

more TIR-containing adaptors were found: Mal/TIRAP

(MyD88-adaptor-like protein/TIR domain containing adap-

tor-like protein), which, based on knock-out studies, appears

to be important in TLR2 and TLR4 signalling and exerts more
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or less the same function as MyD88 [7–10], Trif/Ticam-1 (TIR-

domain containing adaptor inducing interferon-b/TIR con-

taining adaptor molecule), an adaptor recruited by both

TLR3 and TLR4 and responsible for activation of IRF3

[11,12] and Tram/Ticam-2 (Trif-related adaptor molecule/

TIR containing adaptor molecule-2), known to act as a bridg-

ing adaptor between TLR4 and Trif [13,14]. Recently, Sarm

(sterile alpha and HEAT-Armadillo motifs containing pro-

tein), a potential fifth TLR adaptor molecule, was shown to

negatively regulate Trif-dependent Toll-Like receptor signal-

ling [15]. The usage of different adaptors by different receptors

partially provides a molecular basis for the specificity of the

immune reaction against a given pathogen. However, the exact

modalities of this specificity are not yet fully understood [16].

Further downstream signalling can be primarily divided into

a MyD88-dependent branch, which ultimately leads to activa-

tion of NF-jB and mitogen-activated protein kinases (MAPK)

like p38 and Jun N-terminal Kinase (JNK) and a MyD88-

independent branch resulting in phosphorylation of Interferon

Regulatory Factors (IRFs) and expression of interferon-b
(IFN-b). The MyD88-dependent pathway is initiated by

recruitment of IRAK-4 (IL-1 receptor associated kinase-4) to

the activated receptor [17] through a homotypic interaction

with the death domain of MyD88. Next, IRAK-4 phosphory-

lates IRAK-1 [18] and activated IRAK-1 associates together

with TRAF-6 (TNF-a receptor-associated factor 6) [19] into

a complex with TAB (TAK-1 binding) proteins and TAK-1

(TGF-b-activated kinase-1) [20]. This complex is a branching

point for the activation of NF-jB and induction of the MAPK

pathway. Activation of TLR3 and TLR4 also engages a

MyD88-independent pathway. Recruitment of Trif to the acti-

vated receptor leads to activation of TBK1 (TANK-binding

kinase-1) and IKKe, which are essential for IRF-3 phosphory-

lation and nuclear translocation and subsequent induction of

IFN-b [21]. In this report we make use of the mammalian

two-hybrid method MAPPIT (MAmmalian Protein–Protein

Interaction Trap) [22] to study the modalities of TIR–TIR

interactions involved in the early steps of TLR signalling.
2. Material and methods

2.1. Constructs
Generation of the pMG2 and pMG2-SVT prey vectors were de-

scribed earlier [23]. Human full-length MyD88 was amplified using
primers 1 and 2 on the pCDNA3-MyD88-AU1 plasmid (gift of Dr.
Muzio). After EcoRI–XbaI digestion, the fragment was cloned in the
pMG2 vector, resulting in pMG2-MyD88. The TIR domain of
MyD88 was cloned in an analogous manner into the pMG2 vector
blished by Elsevier B.V. All rights reserved.
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using primers 3 and 4 and a BsteII/XbaI digestion. The pMG2-Mal
and pMG2-MalTIR plasmids were generated by amplification of
Mal and the TIR domain of Mal from the pDC304–Mal vector (gift
from Dr. O’Neill) with primers 5–6 and 7–8 respectively, and EcoRI/
XbaI or BsteII/XbaI digestion. The TIR domain of Sarm was amplified
using primers 9–10 on HepG2 cDNA followed by EcoRI/XbaI diges-
tion. This resulted in the pMG2-SarmTIR vector. The pMG2-Tram
vector was generated by amplification of full-length Tram using primer
11–12 on Hek293 cDNA. After BsteII/XhoI digestion, the fragment
was cloned in the pMG2 vector.

Generation of the human LepR-bait constructs in the pcDNA5/
FRT vector was described before [22], and this construct was named
pCLL. The pCLL-MyD88 plasmid was generated by amplification
of full-length MyD88 from the MyD88-AU1 vector using primer pairs
13–14. After BamHI/NotI digestion, the fragments were cloned in the
pCLL vector. The pCLL-Mal and pCLL-Tram plasmids were gener-
ated in an analogous manner using primers 15–16 and 17–18, respec-
tively. The intracellular domains of Toll-Like receptor 2, 3, 4, 5, 7, 9
were amplified using primer sets 19–20, 21–22, 23–24, 25–26, 27–28,
29–30 on MRC5 cDNA (TLR2), the pFLAG CMV1 – TLR3 vector
(gift from Dr. O’Neill), the pFLAG CMV1 – TLR4 vector (gift from
Dr. O’Neill), and RZPD clones HU3_p983D0273D (TLR5), IR-
ATp970B1256D (TLR7) IRATp970H1255D (TLR9) respectively.
After BamHI/NotI digestion, the fragments were cloned into the pCLL
vector.

The MalP125H and MyD88P200H mutant vectors were generated
by PCR based mutagenesis using primers 31–32 and 33–34, respec-
tively (Quikchange� site-directed mutagenesis method, Stratagene).
The pcDNA5-TAP2-CIS vector was generated by amplification of
TAP2-CIS using primers 35–36 on the pMET7-TAP2-flag vector,
which was described earlier [24], followed by a KpnI/NotI based liga-
tion into the pCDNA5-FRT-TO vector (Invitrogen). Mal was ampli-
fied using primers 37–38 on the pDC304–Mal vector and EcoRI/
NotI based ligation into the pcDNA5-TAP2-CIS vector resulted in
the pcDNA5-Mal-flag plasmid.

The pXP2d2-rPAPI-luciferase reporter, originating from the rPAPI
(rat pancreatitis associated protein I) promoter was used as previously
described [22]. The pNFconluc reporter was a gift of Dr. A. Israel.

2.2. Cell culture, transfection, reporter assays and expression controls
Cell culture conditions, transfection procedures and luciferase assays

for Hek293T cells were previously described [25]. For a typical lucifer-
ase experiment, 4 · 105 cells were seeded in 6-well plates 24 h before
transfecting them overnight with the desired constructs together with
the luciferase reporter gene. Cells were left untreated (negative control
NC) or were stimulated overnight with 100 ng/ml leptin followed by
measurement of luciferase activity in cell lysates by chemiluminescence.

Prey expression was examined by Western Blot using anti-FLAG
mouse monoclonal antibody (Sigma), on lysates of transfected cells.
All results are representative for at least three independent transfection
experiments.
2.3. Co-immunoprecipitation
Approximately 2 · 106 Hek293T cells were transfected with different

combinations of MAPPIT bait vector pCLL-TLR4ic, MyD88-prey
plasmid, and an expression vector encoding Mal. Cleared lysates (mod-
ified RIPA lysis buffer: 200 mM NaCl, 50 mM Tris–HCl PH8, 0.05%
SDS, 2 mM EDTA, 1% NP40, 0.5% DOC, Complete Protease Inhib-
itor Cocktail (Roche)) were incubated with a mixture of two rat
anti-mouse LR monoclonal antibodies (4 lg/ml) [26] and protein G-se-
pharose (Amersham Biosciences). After immunoprecipitation, SDS–
PAGE and Western Blotting, interactions were detected using anti-
flag-tag antibody (Sigma), anti-HA (HA-11, CRPinc) and anti-
mouse-HRP (horseradish peroxidase) (Amersham Biosciences).
2.4. Fluorescence microscopy and immunocytochemistry
Hek293T cells were fixed with 3% paraformaldehyde in phosphate-

buffered saline (Invitrogen) for 20 min at room temperature. Next, cells
were permeabilised in 0.1% Triton X-100, washed in phosphate-buf-
fered saline, incubated with anti-flag antibody (Sigma) for 1 h at
37 �C and following several washes in phosphate buffered saline incu-
bated with Alexafluor488-conjugated goat anti-mouse antibody
(Molecular Probes) at room temperature. Nuclei were DAPI stained.
Microscopic images were captured with a Zeiss Axiovert 200 epifluo-
rescence microscope equipped with an Axiocam cooled CCD camera
and processed using AXIOVISION software.
3. Results

3.1. MAPPIT concept

MAPPIT (MAmmalian Protein–Protein Interaction Trap),

a mammalian two-hybrid method [22], was used to study pro-

tein–protein interactions in the TLRs pathway (Fig. 1A). In

brief, we made a C-terminal fusion of a given ‘bait’ protein

with a leptin receptor that is deficient in STAT3 recruitment.

The ‘prey’ protein on the other hand is linked to a series of

four functional STAT3 recruitment sites of the gp130 chain.

Association of bait and prey and ligand stimulation leads to

STAT3 activation and induction of a STAT3-responsive lucif-

erase reporter (rPAPI-Luci). Expression of all the different

preys used throughout this study was checked by Western blot

analysis using an anti-FLAG antibody (Supplementary data).

Bait expression was assayed by FACS analysis using an anti-

LR antibody (Supplementary data) (see Table 1).

We cloned all TLR adaptors both as bait and as prey, and

the intracellular part of selected TLRs as bait. An overview

of all tested adaptor/adaptor and adaptor/TLR interactions

can be found in Table 2. Well-documented interactions like

homo- or hetero-oligomerisation of Mal and MyD88 or inter-

action of Tram with TLR4 were confirmed. In addition, new

interactions were found, including the association of the TIR

domain of Sarm with MyD88 and Tram. Other new findings

will be discussed in more detail below. No MAPPIT signals

were detected using Trif as bait or as prey. This cannot be ex-

plained by an a-specific effect of Trif on the MAPPIT readout

since Trif over-expression did not influence an established

interaction-dependent signal (data not shown). We also ruled

out cytotoxic effects by the Trif-prey since its over-expression

did not lead to increased annexin V binding, a marker for

apoptosis (data not shown). We also constructed a Trif-prey

with a C-terminal fusion of the gp130 tail to exclude interfer-

ence of a N-terminal Trif fusion protein with protein–protein

interactions, but again no positive signals could be observed

(data not shown). Strikingly, the subcellular expression of

the Trif-prey was limited to a perinuclear compartment, much

in contrast to functional prey molecules (Fig. 1B). Since MAP-

PIT measures interactions in the sub-plasmamembranary

space, this finding provides a likely explanation for the lack

of Trif-dependent signals in MAPPIT experiments.

We also monitored the effect of bait expression on endoge-

nous TLR signalling (Fig. 1C). The MyD88-bait and, to a les-

ser extent, the Mal-bait were able to activate the NF-jB

pathway in a ligand independent manner. These data show

that the MAPPIT setup forms functional signalling complexes

at the cell membrane, underscoring its relevance to study TLR

signalling.

3.2. Homo- and hetero-oligomerisation of Mal and MyD88

Mal and MyD88 both have a C-terminal TIR interaction

domain (Toll/IL-1 receptor domain), a property shared with

all TLRs and their adaptors. This TIR domain is thought to

be the critical interaction domain for recruitment of TLR

adaptors to their cognate receptors and for adaptor dimerisa-

tion. MyD88 bears an additional N-terminal Death Domain

linked to the TIR domain by a short intermediate region.



Fig. 1. (A) MAPPIT principle. MAPPIT, a cytokine receptor-based two hybrid method, makes use of a bait protein, C-terminally fused to a leptin
receptor that is deficient in STAT3 recruitment by a Y1138F mutation, and a prey protein linked to a string of four functional STAT3 recruitment
sites of the gp130 chain. Interaction of bait and prey leads to a ligand-dependent complementation of STAT3 activity that can be measured with a
STAT3-responsive luciferase reporter (rPAPI-luci). TLR adaptors were used as bait or prey, while the intracellular parts of selected TLRs were used
as bait. (B) Trif-prey localisation. Hek293T cells were transfected with either Trif-prey, Mal-prey or SVT-prey lacking its nuclear localisation
sequence . Cells were fixed and incubated with anti-flag antibody. Prey expression was visualised with a fluorescent secondary antibody (anti-mouse
IgG-alexa488). Nuclei were DAPI stained. (C) TLR adaptor bait expression activates NF-jB pathway. Hek293T cells were transfected with different
TLR adaptor bait-constructs (1 lg) and a NF-jB responsive luciferase reporter (pNF-conluci). Twenty-four hours after transfection the transfected
cells were stimulated with leptine (100 ng/ml) for another 24 h or left untreated (NS). Mean Luciferase activity + S.D. of triplicate measurements is
plotted.
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Mal on the other hand contains an N-terminal phosphatidylin-

ositol 4,5-bisphosphate (PIP2) binding domain, which medi-

ates Mal recruitment to the plasma membrane [27]. As seen

in Table 2, the TLR adaptors Mal and MyD88 clearly can

form homo- and hetero-dimers, a well-established early event

in TLR signalling. To elucidate which domains of these adapt-

ors are essential in this dimerisation process we mutated a pro-

line to histidine in the TIR domain of Mal (P125H) and

MyD88 (P200H), a mutation known to abrogate TLR signal-

ling [1]. We also generated a prey construct only containing the

C-terminal TIR domain of MyD88 and Mal.

Strikingly, when analysing the interaction properties of the

Mal-bait (Fig. 2A), we observed a drastic effect of the P fi H

mutation. Mutation of the TIR domain of either bait or prey

is sufficient to abrogate interaction. These data confirm that

the TIR domain of Mal and MyD88 is necessary and sufficient

for heterodimerisation. These properties were confirmed using

MyD88 as bait (Fig. 2B).

Much in contrast, Mal homodimerisation depended on its

N-terminal part in addition to TIR-TIR binding. No interac-

tion was observed when using the Mal-bait combined with a

MalTIR-prey only containing the C-terminal TIR region

(Fig. 2A). However, this prey is still functional since clear asso-

ciation of the MyD88-bait and the MalTIR-prey was observed

(Fig. 2B). Mutation of a single TIR domain leads to complete

loss of homodimerisation (Fig. 2A), pointing again at the

importance of this proline residue.
We also checked the effect of the P fi H mutation on

MyD88 homodimerisation (Fig. 2B). When using full-length

MyD88 as bait and prey, mutation of both TIR domains did

not affect interaction, whereas binding of the MyD88TIR-prey

was completely lost when using MyD88P200H as a bait. These

results indicate that the death domain of MyD88 is not only

important in recruiting downstream signalling molecules, but

also for MyD88 homodimerisation.

3.3. Mal bridges TLRs to MyD88

We next examined the TLR4 interaction profile using the

intracellular part of TLR4 as bait (TLR4ic) and different

TLR adaptors as prey (Fig. 3A). As expected, clear interaction

was seen between TLR4ic and Tram, confirming its unique

function in TLR4 signalling [13,14]. Mal/TIRAP also bound

to TLR4ic, an interaction which was reported before [8]. Co-

transfection of the TLR4ic-bait and the universal TLR adap-

tor MyD88-prey did not result in any luciferase induction

although the role of MyD88 in TLR4 signalling is very well

documented [28,29]. Therefore, we examined if the MyD88-

TLR4 interaction could be indirect (Fig. 3B). Co-transfection

of a Mal expression vector together with TLR4ic-bait and

MyD88-prey resulted in a clear luciferase induction, indicating

that Mal bridges MyD88 to TLR4. This interaction was com-

pletely lost when using the TIR disrupting Mal (MalP125H) or

MyD88 (MyD88P200H) mutations, pointing at the impor-

tance of the different TIR domains in this interaction.



Table 1
Overview of primers used in this study

Primer 1 5 0-GCGAATTCATGGCTGCAGGAGGTCCCGGCG-3 0

Primer 2 5 0-GCGCTCTAGATCAGGGCAGGGACAAGGCCTTGG-3 0

Primer 3 5 0-GCGGTAACCGTGCCGCCATGGACCCCCTGGGGCATATGCC-30

Primer 4 5 0-GCTCTAGACAGTCAGGGCAGGGACAAGGCC-3 0

Primer 5 5 0-GCGAATTCATGGCATCATCGACCTCC-30

Primer 6 5 0-GCGCTCTAGACTCAAAGTAGATCAGATAC-30

Primer 7 5 0-GCGGTAACCGTGCCGCCATGGGCAGTAGTCGCTGGAGC-30

Primer 8 5 0-GCTCTAGACAGTCAAAGTAGATCAGATACTGT-30

Primer 9 5 0-GCGCGAATTCACTCCAGATGTCTTCATCAGC-30

Primer 10 5 0-GGCCTCTAGATTAGCGGCCCTGCAGGAAGCGG-30

Primer 11 5 0-GCGGTAACCGCCGCCATGGATTACAAGGATGACGACGATAAGGGTATC GGAAGTCTAAAATAAATTCC-3 0

Primer 12 5 0-GCCTCGAGTCAGGCAATAAATTGTCTTTGTACC-3 0

Primer 13 5 0-GCGGATCCATGGCTGCAGGAGGTCCCGGC-30

Primer 14 5 0-GCGCGGCCGCTCAGGGCAGGGACAAGGCC-30

Primer 15 5 0-GCGAGCTCCGGATCCATGGCATCATCGACCTCC-3 0

Primer 16 5 0-ATAGTTTAGCGGCCGCTCACCGTAGATCAGATAC-30

Primer 17 5 0-GCCGGGATCCATGGGTATCGGGAAGTC-3 0

Primer 18 5 0-GCCGATGCGGCCGCTCAGGCAATAAATTGTC-30

Primer 19 5 0-GCGGATCCTGCCACCGTTTCCATGG-30

Primer 20 5 0-GCGCGGCCGCCTAGGACTTTATCG-30

Primer 21 5 0-GCGAGCTCGTCTTTTTATTGGAATG-30

Primer 22 5 0-GCGCGGCCGCTTAATGTACAGAGTTTTTGG-3 0

Primer 23 5 0-GCGGATCCTGCATAAAGTATGGTA-30

Primer 24 5 0-GCGCGGCCGCTCAGATAGATGTTGC-30

Primer 25 5 0-GCGGATCCACAAAGTTCCGGGGCTTCTG-30

Primer 26 5 0-CCGGCCGCGGCCGCCTTAGGAGATGGTTGCTAC-3 0

Primer 27 5 0-GCGGATCCCACCTCTATTTCTGGGATGT-30

Primer 28 5 0-CCGGCCGCGGCCGCCCTAGACCGTTTCCTTGAACACC-30

Primer 29 5 0-GCGCGCGGATCCTGGCGGGGGCGGCAAAGTGG-30

Primer 30 5 0-CCGGCCGCGGCCGCCCTATTCGGCCGTGGGTCCC-30

Primer 31 5 0-GCAACTCCGGGATGCAACCCACGGCGGCGCTATAGTGTCC-30

Primer 32 5 0-GGACACTATAGCGCCGCCGTGGGTTGCATCCCGGAGTTGC-30

Primer 33 5 0-GTCTGACCGCGATGTCCTCCATGGCACCTGTGTCTGGTC-30

Primer 34 5 0-GACCAGACACAGGTGCCATGGAGGACATCGCGGTCAGAC-30

Primer 35 5 0-GCGAGGTACCGCCACCATGGCCCAGCACGA-3 0

Primer 36 5 0-GCAGCGGCCGCTTAGAGTTGGAAGGGGTACTG-30

Primer 37 5 0-GCGCGAATTCATGGCATCATCGACCTCCC-30

Primer 38 5 0-GCCGCTGCGGCCGCTCAAAGTAGATCAGATACTGTAGC -30

Table 2
Overview of tested adaptor/adaptor and adaptor/TLR interactions

Mal MalTIR MyD88 MyD88TIR Tram SarmTIR SVT

Prey
Mal 8.53 2.54 19.19 11.55 2.3 4.57 1.68
MyD88 23.77 44.84 19.99 45.14 1.05 12.15 2.30
Tram 2.59 2.01 1.33 1.25 18.66 11.66 2.46

Bait
TLR2ic 8.71 8.18 2.28 0.92 1.06 2.79 1.04
TLR3ic 4.01 3.07 1.01 0.99 1.16 4.43 1.22
TLR4ic 26.69 56.65 1.22 1.05 16.40 1.70 1.22

Hek293T cells were transiently co-transfected with the MAPPIT bait plasmid (0.5 lg), different TLR adaptor prey plasmids (0.5 lg) and the STAT3
responsive rPAPI-luci reporter (0.3 lg). Twenty-four hours after transfection the transfected cells were stimulated with leptin (100 ng/ml) for another
24 h or were left untreated (NS). Luciferase measurements were performed in triplicate. Data are expressed as mean fold induction (ratio Stimulated/
NS). Positive interactions (fold induction >5) are highlighted in bold. SVT-prey was used as a negative control. Expression of all the different preys
was checked by Western blot analysis using an anti-FLAG antibody.
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These data were confirmed by co-immunoprecipitation (Fig. 3C).

The extracellular portion of the leptin receptor was used to

immunoprecipitate the MAPPIT TLR4ic-bait protein (using an

anti-LR antibody) and only when Mal was co-expressed, the

MyD88-prey protein could be co-immunoprecipitated.

In an analogous manner, the TLR2ic interaction profile was

examined (Fig. 3D). In accordance with the TLR4ic interac-

tion profile, no interaction between MyD88 and TLR2 could

be observed. However, complementation with Mal gave rise
to a clear luciferase induction, indicating that Mal also acts

as bridging adaptor between MyD88 and TLR2.
4. Discussion

One of the first steps in pathogen recognition and clearance

is the recognition of evolutionary conserved pathogen-associ-

ated molecular patterns whereby TLRs play a crucial role.



Fig. 2. Mal and MyD88 homo- and heterodimersiation. (A) Hek293T cells were transiently co-transfected with the MAPPIT bait plasmid pCLL-
Mal or pCLL-MalP125H, different TLR adaptor prey plasmids and the STAT3 responsive rPAPI-luci reporter. Experimental setup was as in Table
2. (B) Interaction analysis of the MyD88 bait (pCLL-MyD88) or its mutant (pCLL-MyD88P200H). Experimental setup was as in Table 2.
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Ligand binding to a given TLR activates complex signalling

pathways, ultimately leading to pro-inflammatory responses.

These responses vary between activated TLRs, which is in part

explained by different adaptor usage. We here take a closer

look at the mechanistics of TLR adaptor recruitment using

MAPPIT, a mammalian two-hybrid strategy. We cloned all

known TLR adaptors either as bait or as prey, and the intra-

cellular part of selected TLRs as bait. As shown in Table 2,

well-documented interactions like MyD88/Mal homo- and het-

ero-dimerisation, or recruitment of Tram to TLR4 could read-

ily be detected. No interactions were observed using Trif as a

bait or as a prey, probably due to its unique, non-cytoplasmic

localisation that most likely interferes with the MAPPIT read-

out (Fig. 1B). Next to known interactions, some new observa-

tions were also found. Recently, Sarm was described as a

negative regulator of Trif-dependent signalling pathways [15].

However, as seen in Table 2, we also observed a clear interac-

tion with MyD88 or Tram when using the ‘TIR’ interaction

domain of Sarm as a prey. These data suggest that Sarm, next
to inhibition of Trif , also could be involved in regulating the

TLR adaptors MyD88 and Tram.

MyD88 is commonly referred to as a ‘‘universal’’ adaptor,

used by every TLR except TLR3. However, biochemical data

providing a direct link between MyD88 and a TLR are scanty.

In this report we could not detect an interaction between

MyD88 and TLR2, TLR4 (Fig. 3). However, the TLR4-bait

is fully functional since a clear signal was obtained for the

well-documented interactions with the Mal- or Tram-preys

[13,14]. This inability of MyD88 to bind TLR4 in MAPPIT

is in line with a recent report showing no MyD88/TLR4 bind-

ing when analyzed via the yeast two-hybrid method [30]. Sig-

nificantly, co-expression of the TLR adaptor Mal resulted in

a clear MAPPIT signal for the TLR4-bait/MyD88-prey combi-

nation. Since Mal binds both TLR4 and MyD88, this observa-

tion demonstrates its bridging role between MyD88 and

TLR4, analogous to the Tram/Trif branch of TLR4 signal-

ling [31] (Fig. 3B). These data were confirmed using co-immu-

noprecipitation (Fig. 3C). While this manuscript was in



Fig. 3. TLR4ic interaction profile. (A) Hek293T cells were transiently co-transfected with the MAPPIT bait plasmid pCLL-TLR4ic, various TLR
adaptor prey constructs (or a SVT-prey as negative control) and the rPAPI-luci reporter. Experimental setup was as in Table 2. (B) Effect of a Mal
expression vector. Hek293T cells were transiently co-transfected with pCLL-TLR4ic, a MyD88-prey (pMG2-MyD88/pMG2-MyD88P200H), a Mal
expression vector (pcDNA5-Mal/pcDNA5-MalP125H) and the rPAPI-luci reporter. Experimental setup was in Table 2. (C) Co-immunoprecipitation
analysis. Hek293T cells were transfected with combinations of pCLL-TLR4ic, pMG2-MyD88, pDC304-Mal-HA. Cell lysates were immunopre-
cipitated with an a mixture of two rat monoclonal antibodies against the extracellular part of the leptin receptor (a-LR) and subsequently
immunoblotted (IB) with anti-flag or anti-HA. (D) TLR2ic interaction profile. Hek293T cells were transiently co-transfected with the MAPPIT bait
plasmid pCLL-TLR2ic, various TLR adaptor prey constructs, a Mal expression vector (or empty vector) and the rPAPI-luci reporter. Experimental
setup was as in Table 2.
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preparation, Kagan and Medzhitov showed that Mal contains

a PIP2 binding domain that mediates Mal recruitment to mem-

branes and that the primary function of Mal in TLR signalling

is to facilitate MyD88 delivery to TLR4 via PIP2 binding [27].

These observations are also consistent with the phenotype of

Mal-deficient mice, which is analogous to MyD88-deficient

mice in terms of TLR2 and 4 signalling [7,10]. Similar findings

were obtained supporting a TLR2/Mal/MyD88 bridging com-

plex (Fig. 3D) in line with the need for Mal in TLR2 signalling.

Of note, our findings are in contrast with a recent report [30],

demonstrating direct TLR2/MyD88 binding with a yeast two-

hybrid approach. The reason for this contradictory finding is

unclear at present.

We also evaluated the interactions between the TIR domains

of additional TLRs (TLR5, TLR7 and TLR 9) and MyD88

(data not shown). Most interestingly, in none of these cases

could we observe any signal. Although we cannot rule out at

present that our strategy fails to detect these interactions, we

would like to point out that a control using a JAK2-binding-

prey was clearly positive, indicating that the attached TIR do-
mains did not interfere with the MAPPIT read out. Moreover,

the yeast two-hybrid method also failed to detect direct inter-

action between TLR9 and MyD88 [30]. In addition, TLR7 and

TLR9 signal from acidic endosomes. How MyD88 is recruited

to those distinct cellular compartments remains unknown, and

the use of accessory molecules, next to Mal and Tram, there-

fore cannot be excluded.

We next investigated the dimerisation properties of Mal

and MyD88 in more detail. MyD88 and Mal both are two-

domain proteins containing a C-terminal TIR domain

preceded by a Death Domain and a N-terminal domain,

respectively. Mutation of a single proline to histidine in the

so called ‘‘BB-loop’’ of the TIR domain blocks TLR signal-

ling. Various models of these TIR domains have been

described, but the precise role of this conserved proline

remains elusive [32,33]. Strikingly, mutation of the TIR do-

main of Mal (MalP125H) in either prey or bait, contrary to

GST pull-down experiments [32], completely abolishes homo-

dimerisation (Fig. 2A). These data support the model in

which the BB loop of the TIR domain plays a crucial role
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in TIR-TIR interactions [33] and provide a biochemical expla-

nation for the drastic effect of this mutation on signalling.

Moreover, in contrast with wild type Mal-bait, the

MalP125H-bait is no longer capable of activating NF-jB sig-

nalling (Fig. 1C). This again reflects the importance of this

proline residue in TLR signalling. In addition, we observed

that the contribution of each interaction domain of Mal

and MyD88 differs from homo- and hetero-dimerisation.

For hetero-dimerisation, the isolated TIR domain of Mal or

MyD88 is sufficient (Fig. 2). Mal homodimerisation on

the other hand is dependent on the N-terminal domain of

Mal, which is necessary to stabilise homodimer formation

(Fig. 2A). This contrasts to MyD88 homodimerisation

(Fig. 2B), where the isolated TIR domain is sufficient for

interaction. Mutation of the conserved proline residue in the

isolated TIR domain again abolished interaction. In contrast,

full-size bait and prey homodimerisation is not affected by

this P200H mutation nor does it eliminate NF-jB signalling

(Fig. 1C). This implies that the MyD88 Death Domain not

only interacts with downstream signalling molecules, as

shown in several studies [17], but also can participate in

MyD88 homodimer formation.

In brief, we examined the recruitment and dimerisation

properties of the TLR adaptors Mal and MyD88 and provide

a biochemical basis for the bridging function of Mal between

an activated TLR and the TLR adaptor MyD88.
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