45 research outputs found

    Effects of a Novel Nitroxyl Donor in Acute Heart Failure The STAND-UP AHF Study

    Get PDF
    Objectives: The primary objective was to identify well-tolerated doses of cimlanod in patients with acute heart failure (AHF). Secondary objectives were to identify signals of efficacy, including biomarkers, symptoms, and clinical events. Background: Nitroxyl (HNO) donors have vasodilator, inotropic and lusitropic effects. Bristol-Myers Squibb-986231 (cimlanod) is an HNO donor being developed for acute heart failure (AHF). Methods: This was a phase IIb, double-blind, randomized, placebo-controlled trial of 48-h treatment with cimlanod compared with placebo in patients with left ventricular ejection fraction ≤40% hospitalized for AHF. In part I, patients were randomized in a 1:1 ratio to escalating doses of cimlanod or matching placebo. In part II, patients were randomized in a 1:1:1 ratio to either of the 2 highest tolerated doses of cimlanod from part I or placebo. The primary endpoint was the rate of clinically relevant hypotension (systolic blood pressure <90 mm Hg or patients became symptomatic). Results: In part I (n = 100), clinically relevant hypotension was more common with cimlanod than placebo (20% vs. 8%; relative risk [RR]: 2.45; 95% confidence interval [CI]: 0.83 to 14.53). In part II (n = 222), the incidence of clinically relevant hypotension was 18% for placebo, 21% for cimlanod 6 μg/kg/min (RR: 1.15; 95% CI: 0.58 to 2.43), and 35% for cimlanod 12 μg/kg/min (RR: 1.9; 95% CI: 1.04 to 3.59). N-terminal pro–B-type natriuretic peptide and bilirubin decreased during infusion of cimlanod treatment compared with placebo, but these differences did not persist after treatment discontinuation. Conclusions: Cimlanod at a dose of 6 μg/kg/min was reasonably well-tolerated compared with placebo. Cimlanod reduced markers of congestion, but this did not persist beyond the treatment period. (Evaluate the Safety and Efficacy of 48-Hour Infusions of HNO (Nitroxyl) Donor in Hospitalized Patients With Heart Failure [STANDUP AHF]; NCT03016325

    Lesson from the Stoichiometry Determination of the Cohesin Complex: A Short Protease Mediated Elution Increases the Recovery from Cross-Linked Antibody-Conjugated Beads

    Get PDF
    Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analysesssuch as the stoichiometry determination of protein complexesshave become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periodssas performed in standard on-bead digestionsled to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    No full text
    <div><p>The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.</p></div
    corecore