126 research outputs found
Stochastic Volatility: Univariate and Multivariate Extensions
Stochastic volatility models, aka SVOL, are more difficult to estimate than standard time-varying volatility models (ARCH). Advances in the literature now offer well tested estimators for a basic univariate SVOL model. However, the basic model is too restrictive for many economic and finance applications. The use of the basic model can lead to biased volatility forecasts especially around crucial periods of high volatility. We extend the basic SVOL needs to allow for the leverage effect, through a correlation between observable and variance errors, and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain Monte Carlo algorithm for this extended model. We also provide an algorithm to analyze a multivariate factor SVOL model. The method simultaneously performs finite sample inference and smoothing. We document the performance of the estimator and show why the extensions are warranted. We provide the researcher with a range of model diagnostics, such as the identification of outliers for stochastic volatility models or the assessment of the normality of the conditional distribution. We implement this methodology on a number of univariate financial time series. There is strong evidence of (1) non-normal conditional distributions for most series, and (2) a leverage effect for stock returns. We illustrate the robustness of the results to the choice of the prior distributions. These results have policy implications on decisions based upon prediction of volatility, especially when dealing with tail prediction as in risk management.
Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditionnels de type ARCH. La littérature récente offre des estimateurs éprouvés pour un modèle SVOL univarié de base. Ce modèle est trop contraignant pour une utilisation en économie financière. Les prévisions de volatilité qu'il produit peuvent etre biaisées, particulièrement quand la volatilité est élevée. Nous généralisons le modèle de base en y ajoutant des effets de levier par le biais d'une corrélation entre les chocs observables et de variance, et la possibilité de distributions conditionnelles à queues épaisses. Nous développons un algorithme bayésien à chaînes markoviennes de Monte Carlo. Nous développons aussi un algorithme pour l'analyse d'un modèle SVOL multivarié à facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les paramètres et les volatilités. Nous documentons les performances de l'estimateur et montrons que les extensions sont nécessaires. Nous testons la normalité des distributions conditionnelles. Cette méthode est mise en oeuvre sur plusieurs séries financières. Il y a une forte évidence (1) de distributions conditionnelles à queues épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont robustes et ont d'importantes implications sur les décisions fondées sur les prédictions de volatilité, particulièrement pour la gestion de risques.Stochastic volatility, ARCH, MCMC algorithm, leverage effect, risk management, fat-tailed distributions, Volatilité stochastique, ARCH, algorithme MCMC, effets de levier, gestion de risque, distributions à queues épaisses
List Models of Procedure Learning
This paper presents a new theory of the initial stages of skill acquisition and then employs the theory to model current and future training programs for fight management systems (FMSs) in modern commercial airliners like the Boeing 777 and the Airbus A320. The theoretical foundations for the theory are a new synthesis of the literature on human memory and the latest version of the ACT-R theory of skill acquisition
Stochastic Volatility: Univariate and Multivariate Extensions
Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditionnels de type ARCH. La littérature récente offre des estimateurs éprouvés pour un modèle SVOL univarié de base. Ce modèle est trop contraignant pour une utilisation en économie financière. Les prévisions de volatilité qu'il produit peuvent etre biaisées, particulièrement quand la volatilité est élevée. Nous généralisons le modèle de base en y ajoutant des effets de levier par le biais d'une corrélation entre les chocs observables et de variance, et la possibilité de distributions conditionnelles à queues épaisses. Nous développons un algorithme bayésien à chaînes markoviennes de Monte Carlo. Nous développons aussi un algorithme pour l'analyse d'un modèle SVOL multivarié à facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les paramètres et les volatilités. Nous documentons les performances de l'estimateur et montrons que les extensions sont nécessaires. Nous testons la normalité des distributions conditionnelles. Cette méthode est mise en oeuvre sur plusieurs séries financières. Il y a une forte évidence (1) de distributions conditionnelles à queues épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont robustes et ont d'importantes implications sur les décisions fondées sur les prédictions de volatilité, particulièrement pour la gestion de risques.Stochastic volatility models, aka SVOL, are more difficult to estimate than standard time-varying volatility models (ARCH). Advances in the literature now offer well tested estimators for a basic univariate SVOL model. However, the basic model is too restrictive for many economic and finance applications. The use of the basic model can lead to biased volatility forecasts especially around crucial periods of high volatility. We extend the basic SVOL needs to allow for the leverage effect, through a correlation between observable and variance errors, and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain Monte Carlo algorithm for this extended model. We also provide an algorithm to analyze a multivariate factor SVOL model. The method simultaneously performs finite sample inference and smoothing. We document the performance of the estimator and show why the extensions are warranted. We provide the researcher with a range of model diagnostics, such as the identification of outliers for stochastic volatility models or the assessment of the normality of the conditional distribution. We implement this methodology on a number of univariate financial time series. There is strong evidence of (1) non-normal conditional distributions for most series, and (2) a leverage effect for stock returns. We illustrate the robustness of the results to the choice of the prior distributions. These results have policy implications on decisions based upon prediction of volatility, especially when dealing with tail prediction as in risk management
Recommended from our members
Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean
By comparing annual and seasonal changes in precipitation over land and ocean since 1950 simulated by the CMIP5 (Coupled Model Intercomparison Project, phase 5) climate models in which natural and anthropogenic forcings have been included, we find that clear global-scale and regional-scale changes due to human influence are expected to have occurred over both land and ocean. These include moistening over northern high latitude land and ocean throughout all seasons and over the northern subtropical oceans during boreal winter. However we show that this signal of human influence is less distinct when considered over the relatively small area of land for which there are adequate observations to make assessments of multi-decadal scale trends. These results imply that extensive and significant changes in precipitation over the land and ocean may have already happened, even though, inadequacies in observations in some parts of the world make it difficult to identify conclusively such a human fingerprint on the global water cycle. In some regions and seasons, due to aliasing of different kinds of variability as a result of sub sampling by the sparse and changing observational coverage, observed trends appear to have been increased, underscoring the difficulties of interpreting the apparent magnitude of observed changes in precipitation
Models and Priors for Multivariate Stochastic Volatility
Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than the successful ARCH family of models. In this paper, we develop methods for finite sample inference, smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect), and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic model. We specify the models as a hierarchy of conditional probability distributions: p(data/volatilities), p(volatilities/ parameters) and p(parameters). This hierarchy provides a natural environment for the construction of stochastic volatility models that depart from standard distributional assumptions. Given a model and the data, inference and prediction are based on the joint posterior distribution of the volatilities and the parameters which we simulate via Markov chain Monte Carlo (MCMC) methods. Our approach also provides a sensitivity analysis for parameter inference and an outlier diagnostic. Our framework, therefore, provides a general perspective on specification and implementation of stochastic volatility models. We apply various extensions of the basic SVOL model to many financial time series. We find strong evidence of non-normal conditional distributions for stock returns and exchange rates. We also find some evidence of correlated errors for stock returns. These departures from the basic model affect persistence and therefore should be incorporated if the model is used for variance prediction.
Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer que les modèles de type ARCH qui connaissent un grand succès. Dans cet article, nous développons des méthodes en échantillons finis pour l'inférence et la prédiction, ceci pour un nombre de modèles SVOL univariés et multivariés. Plus précisément nous modélisons des distributions conditionnelles non-normales, des modèles avec effets de levier, et deux modèles multivariés; un modèle a structure de facteurs et un modèle d'escompte dynamique. Nous spécifions les modèles par une hiérarchie de distributions conditionnelles : p(données|volatilités), p(volatilités|paramètres), et p(paramètres). Cette hiérarchie fournit un environnement naturel pour l'élaboration de modèles de volatilité stochastique plus généraux que le modèle de base. Pour un modèle et un échantillon, l'inférence et la prédiction sont fondées sur la distribution postérieure jointe des volatilités et des paramètres que nous simulons avec des méthodes de Chaînes de Markov et de Monte Carlo (MCMC). Notre approche fournit aussi une analyse de sensitivité pour les paramètres et une analyse pour les outliers. Le cadre d'estimation fournit donc une perspective générale sur la spécification et l'implémentation des modèles de volatilité stochastique. Nous appliquons plusieurs extensions du modèle SVOL de base à de nombreuses séries financières. Il y a une forte évidence de non-normalité des distributions conditionnelles. Il y aussi une certaine évidence de corrélation des erreurs pour les retours sur actions. Ces élaborations du modèle de base ont une influence sur la persistance et devraient être incorporées en vue de prédictions de volatilité.Stochastic volatility; Forecasting and smoothing; Metropolis algorithm, Volatilité stochastique ; Inférence et prédiction ; Algorythme Metropolis
3,3′-Dibromo-5,5′-di-tert-butyl-2,2′-dimethoxybiphenyl
The title compound, C22H28Br2O2, crystallizes in a staggered arrangement to minimize the interactions of its ortho substituents, with a dihedral angle of 84.2 (3)° between the two aromatic rings. Short C—H⋯O hydrogen-bonding interactions between methoxy groups result in a one-dimensional polymeric chain of molecules lying parallel to the b axis. One tert-butyl group is disordered equally over two positions
Models and Priors for Multivariate Stochastic Volatility
Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer que les modèles de type ARCH qui connaissent un grand succès. Dans cet article, nous développons des méthodes en échantillons finis pour l'inférence et la prédiction, ceci pour un nombre de modèles SVOL univariés et multivariés. Plus précisément nous modélisons des distributions conditionnelles non-normales, des modèles avec effets de levier, et deux modèles multivariés; un modèle a structure de facteurs et un modèle d'escompte dynamique. Nous spécifions les modèles par une hiérarchie de distributions conditionnelles : p(données|volatilités), p(volatilités|paramètres), et p(paramètres). Cette hiérarchie fournit un environnement naturel pour l'élaboration de modèles de volatilité stochastique plus généraux que le modèle de base. Pour un modèle et un échantillon, l'inférence et la prédiction sont fondées sur la distribution postérieure jointe des volatilités et des paramètres que nous simulons avec des méthodes de Chaînes de Markov et de Monte Carlo (MCMC). Notre approche fournit aussi une analyse de sensitivité pour les paramètres et une analyse pour les outliers. Le cadre d'estimation fournit donc une perspective générale sur la spécification et l'implémentation des modèles de volatilité stochastique. Nous appliquons plusieurs extensions du modèle SVOL de base à de nombreuses séries financières. Il y a une forte évidence de non-normalité des distributions conditionnelles. Il y aussi une certaine évidence de corrélation des erreurs pour les retours sur actions. Ces élaborations du modèle de base ont une influence sur la persistance et devraient être incorporées en vue de prédictions de volatilité.Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than the successful ARCH family of models. In this paper, we develop methods for finite sample inference, smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect), and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic model. We specify the models as a hierarchy of conditional probability distributions: p(data/volatilities), p(volatilities/ parameters) and p(parameters). This hierarchy provides a natural environment for the construction of stochastic volatility models that depart from standard distributional assumptions. Given a model and the data, inference and prediction are based on the joint posterior distribution of the volatilities and the parameters which we simulate via Markov chain Monte Carlo (MCMC) methods. Our approach also provides a sensitivity analysis for parameter inference and an outlier diagnostic. Our framework, therefore, provides a general perspective on specification and implementation of stochastic volatility models. We apply various extensions of the basic SVOL model to many financial time series. We find strong evidence of non-normal conditional distributions for stock returns and exchange rates. We also find some evidence of correlated errors for stock returns. These departures from the basic model affect persistence and therefore should be incorporated if the model is used for variance prediction
Aiding Vertical Guidance Understanding
A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance
- …