155 research outputs found

    Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control

    Get PDF
    Opioid receptors are widely expressed in the central and peripheral nervous system as well as in numerous nonneuronal tissues. Both animal models and human clinical data support the involvement of peripheral opioid receptors in analgesia, particularly in inflammation where both opioid receptor expression and efficacy are increased. Immune cells have been shown to contain numerous opioid peptides such as β-endorphin (END), met-enkephalin (ENK), and dynorphin-A (DYN), although the predominant opioid peptide involved in immune-cell mediated antinociception is thought to be END. These opioid-containing immune cells migrate to inflamed tissues during a complex process of recruitment by chemokines, adhesion, and extravasation. In these tissues, opioid peptide is released from the immune cells upon stimulation with corticotrophin-releasing factor (CRF), noradrenaline, and interleukin 1β (IL-1β), and the immune cells return to the local lymph node depleted of peptide. Consistent with this model, systemic immunosuppression may lead to impaired endogenous analgesia as competent immune cells are essential to achieve release of endogenous opioid peptides within inflamed tissue. A further level of complexity is added by the observation that exogenous opioids may impair immune cell function, although there is some evidence to suggest that endogenous opioid peptides do not share this immunosuppressive effect. Improving our understanding of endogenous opioid mechanisms will provide valuable insight towards the development of novel treatments for pain with improved side effect profiles

    Morphine Use in Cancer Surgery

    Get PDF
    Morphine is the core of perioperative pain management. However, when it comes to cancer surgery the possibility that this drug might affect tumor recurrence and metastasis has raised concerns. The results of two recent retrospective clinical trials indicated that regional anesthesia/analgesia might be beneficial in prostate and breast cancer surgery. It was proposed that morphine could be responsible for the higher recurrence and mortality rate observed in the general anesthesia/opioid analgesia groups. Nevertheless, the results of several other retrospective studies and one randomized prospective trial failed to confirm any advantage for regional anesthesia/analgesia over general anesthesia and opioid analgesia. Moreover laboratory data on the effect of morphine on cancer are contradictory, ranging from tumor-promoting to anti-tumor effects. Considering that surgical stress and pain promote the recurrence and spread of cancer, choosing a proper analgesic strategy is of high significance. Although the question of whether morphine causes any harm to cancer patients remains unanswered, alternative analgesic regimens could be used concomitant to or instead of morphine to limit its potential adverse effects

    The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Get PDF
    BACKGROUND: The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. RESULTS: In the present studies we investigated the hypothesis that the μ opioid receptor (MOP) agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca(2+)) responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca(2+ )responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca(2+ )responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. CONCLUSION: The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation

    Analgesic treatment of ciguatoxin-induced cold allodynia

    Get PDF
    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Na-v responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Na(v)1.2 and Na(v)1.3, but not Na(v)1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the K(v)7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Na(v)1.6, Na(v)1.7, or Na(v)1.8, indicating cold allodynia might be more complex than simple activation of Na-v channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. (C) 2013 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved

    Étude comparative des pratiques d’enseignement de la lecture en 4e primaire : des questions de didactique pointées par l’étude internationale PIRLS 2011

    Full text link
    Cette étude vise à mettre en lumière des pratiques d‘enseignement de la lecture susceptibles de rendre compte des disparités de performances observées dans différents systèmes éducatifs. Les comparaisons portent sur les pratiques d’enseignement de la lecture déclarées par les enseignant.e.s de huit systèmes éducatifs contrastés tant au plan de la langue enseignée (français, anglais, allemand) qu’au plan des performances moyennes obtenues à l’épreuve PIRLS 2011. Les résultats mettent en évidence des différences parfois importantes dans la fréquence à laquelle sont mises en place certaines facettes de l’enseignement de la lecture et plus spécifiquement de la compréhension. Ces pratiques témoignent de visions contrastées, parfois éloignées de ce que l’on pourrait attendre d’un enseignement de la lecture experte.Peer reviewe

    Bio-Guided Fractionation of Papaya Leaf Juice for Delineating the Components Responsible for the Selective Anti-proliferative Effects on Prostate Cancer Cells

    Get PDF
    Alternative therapies against cancer cells with minimal or no effect on healthy tissues are highly sought after. Prostate cancer (PCa) is the second most frequently diagnosed malignancy in males. The Carica papaya L. leaf extract has been traditionally used by Australian aboriginal people for anticancer properties. In this study, medium polar fraction of papaya leaf extract that had shown anti-proliferative activity in PCa cell lines in vitro, in earlier studies, was further fractionated to 28 fractions by semi-preparative HPLC. Nine of these fractions were identified to possess selective anti-proliferative responses on PCa cells in comparison to non-cancerous cells of prostate gland origin. When these nine sub-fractions were mixed in various combinations, a combination containing six of the specific fractions (FC-3) showed the best potency. FC3 inhibited the growth of BPH-1, PC-3, and LNCaP cells in a concentration-dependent manner with an IC50 value <20 μg/mL, while (unlike paclitaxel, the positive control) minimal effect was observed on the proliferation of non-cancerous, WPMY-1 and RWPE-1cells. Furthermore, synergistic interaction of FC-3 with paclitaxel was observed with combination index values in the range of 0.89–0.98 and 0.85–1.10 on PC-3 and LNCaP cells, respectively. Untargeted qualitative analysis using UHPLC (Ultra High-Performance Liquid Chromatography)-QToF (Quadrupole Time of-Flight) mass spectrometry and screening against the METLIN database indicated presence of multiple known anticancer compounds in the FC-3 extract. These outcomes show that the potent and selective anti-proliferative effects are due to a range of bio-active compounds within the medium polar fraction of papaya leaf juice

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Remodeling of Purinergic Receptor-Mediated Ca2+ Signaling as a Consequence of EGF-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells

    Get PDF
    Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis
    corecore