36 research outputs found

    Delayed-Release Dimethyl Fumarate Safety and Efficacy in Pediatric Patients With Relapsing-Remitting Multiple Sclerosis

    Get PDF
    Background: Pediatric multiple sclerosis (MS) is rare: only 1.5-5% of MS cases are diagnosed before 18 years of age, and data on disease-modifying therapies (DMTs) for pediatric MS are limited. The CONNECTED study assessed the long-term safety and efficacy of treatment with delayed-release dimethyl fumarate (DMF), an oral MS DMT, in pediatric patients with MS. Methods: CONNECTED is the 96-week extension to FOCUS, a 24-week phase 2 study of patients aged 13-17 years;participants received DMF 240 mg twice daily. Endpoints included (primary) incidence of adverse events (AEs), serious AEs, and DMF discontinuations due to an AE, and (secondary) T2 hyperintense lesion incidence by magnetic resonance imaging and annualized relapse rate (ARR). Results: Twenty participants [median (range) age, 17 (14-18) years;65% female] who completed FOCUS enrolled into CONNECTED;17 (85%) completed CONNECTED. Eighteen participants (90%) experienced AEs: the most frequent was flushing (25%). None experienced infections or fever related to low lymphocyte counts. Three participants experienced four serious AEs;none led to DMF discontinuation. Twelve of 17 participants (71%) had no new/newly enlarged T2 lesions from weeks 16-24, two (12%) had one, and one each (6%) had two, three, or five or more lesions [median (range), 0 (0-6)]. Over the full 120-week treatment period, ARR was 0.2, an 84.5% relative reduction (n = 20;95% confidence interval: 66.8-92.8;p < 0.0001) vs. the year before DMF initiation. Conclusions: The long-term safety and efficacy observed in CONNECTED was consistent with adults, suggesting pediatric and adolescent patients with MS might benefit from DMF treatment

    Effect of fingolimod on health-related quality of life in paediatric patients with multiple sclerosis: results from the phase 3 PARADIG MS Study

    Get PDF
    Background In the PARADIG MS Study, fingolimod demonstrated superior efficacy versus interferon (IFN) β-1a and comparable overall incidence of adverse events but slightly higher rate of serious adverse events in patients with paediatric-onset multiple sclerosis (PoMS). Here, we report the health-related quality of life (HRQoL) outcomes from PARADIG MS . Methods Patients with PoMS (N=215; aged 10–<18 years) were randomised to once-daily oral fingolimod (N=107) or once-weekly intramuscular IFN β-1a (N=108). HRQoL outcomes were assessed using the 23-item Pediatric Quality of Life (PedsQL) scale that comprises Physical and Psychosocial Health Summary Scores (including Emotional, Social and School Functioning). A post hoc inferential analysis evaluated changes in self-reported or parent-reported PedsQL scores from baseline up to 2 years between treatment groups using an analysis of covariance model. Results Treatment with fingolimod showed improvements versus IFN β-1a on the PedsQL scale in both the self-reported and parent-reported Total Scale Scores (4.66 vs −1.16, p≤0.001 and 2.71 vs −1.02, p≤0.05, respectively). The proportion of patients achieving a clinically meaningful improvement in the PedsQL Total Scale Score was two times higher with fingolimod versus IFN β-1a per the self-reported scores (47.5% vs 24.2%, p=0.001), and fingolimod was favoured versus IFN β-1a per the parent-reported scores (37.8% vs 24.7%, p=non-significant). Group differences in self-reported Total Scale Scores in favour of fingolimod were most pronounced among patients who had ≥2 relapses in the year prior to study entry or who showed improving or stable Expanded Disability Status Scale scores during the study. Conclusion Fingolimod improved HRQoL compared with IFN β-1a in patients with PoMS as evidenced by the self-reported and parent-reported PedsQL scores

    Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia.

    Get PDF
    We identified a homozygous missense mutation in the gene encoding NAD synthesizing enzyme NMNAT2 in two siblings with childhood onset polyneuropathy with erythromelalgia. No additional homozygotes for this rare allele, which leads to amino acid substitution T94M, were present among the unaffected relatives tested or in the 60,000 exomes of the ExAC database. For axons to survive, axonal NMNAT2 activity has to be maintained above a threshold level but the T94M mutation confers a partial loss of function both in the ability of NMNAT2 to support axon survival and in its enzymatic properties. Electrophysiological tests and histological analysis of sural nerve biopsies in the patients were consistent with loss of distal sensory and motor axons. Thus, it is likely that NMNAT2 mutation causes this pain and axon loss phenotype making this the first disorder associated with mutation of a key regulator of Wallerian-like axon degeneration in humans. This supports indications from numerous animal studies that the Wallerian degeneration pathway is important in human disease and raises important questions about which other human phenotypes could be linked to this gene

    Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model

    Get PDF
    Thirty-five percent of patients with Rett syndrome carry nonsense mutations in the MECP2 gene. We have recently shown in transfected HeLa cells that readthrough of nonsense mutations in the MECP2 gene can be achieved by treatment with gentamicin and geneticin. This study was performed to test if readthrough can also be achieved in cells endogenously expressing mutant MeCP2 and to evaluate potentially more effective readthrough compounds. A mouse model was generated carrying the R168X mutation in the MECP2 gene. Transfected HeLa cells expressing mutated MeCP2 fusion proteins and mouse ear fibroblasts isolated from the new mouse model were treated with gentamicin and the novel aminoglycosides NB30, NB54, and NB84. The localization of the readthrough product was tested by immunofluorescence. Readthrough of the R168X mutation in mouse ear fibroblasts using gentamicin was detected but at lower level than in HeLa cells. As expected, the readthrough product, full-length Mecp2 protein, was located in the nucleus. NB54 and NB84 induced readthrough more effectively than gentamicin, while NB30 was less effective. Readthrough of nonsense mutations can be achieved not only in transfected HeLa cells but also in fibroblasts of the newly generated Mecp2R168X mouse model. NB54 and NB84 were more effective than gentamicin and are therefore promising candidates for readthrough therapy in Rett syndrome patients

    Evaluation of Novel Enhancer Compounds in Gentamicin-Mediated Readthrough of Nonsense Mutations in Rett Syndrome

    No full text
    Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.Medicine, Faculty ofNon UBCBiochemistry and Molecular Biology, Department ofReviewedFacultyResearche

    Periventricular heterotopia: Identifying homogeneity among heterogeneity.

    No full text
    Periventricular nodular heterotopia (PNH) is a malformation of cortical development due to failure of migration of neurons from the ventricular zone to the cortex during embryonic development, typically characterized by nodules of ectopic neurons lining the lateral ventricles, which can be identified on brain MRI. Clinical manifestations are heterogeneous and nonspecific, with the main features being focal seizures and variable degrees of cognitive impairment. Thanks to detailed clinical observations and higher-resolution imaging, it has become increasingly clear that PNH represents a clinically and genetically heterogeneous group of disorders.JOURNAL ARTICLESCOPUS: ed.jinfo:eu-repo/semantics/publishe

    Molecular Diagnosis of Rett Syndrome

    No full text

    A novel remitting leukodystrophy associated with a variant in FBP2

    Get PDF
    Leukodystrophies are genetic disorders of cerebral white matter that almost exclusively have a progressive disease course. We became aware of three members of a family with a disorder characterized by a sudden loss of all previously acquired abilities around 1 year of age followed by almost complete recovery within 2 years. Cerebral MR1 and myelin sensitive imaging showed a pronounced demyelination that progressed for several months despite signs of clinical improvement and was followed by remyelination. Exome sequencing did not-identify any mutations in known leukodystrophy genes but revealed a heterozygous variant in the FBP2 gene, c.343G>A, p. Val115Met, shared by the affected family members. Cerebral MRI of other family members demonstrated similar white matter abnormalities in all carriers of the variant in FBP2. The FBP2 gene codes for muscle fructose 1,6-bisphosphatase, an enzyme involved in gluconeogenesis that is highly expressed in brain tissue. Biochemical analysis showed that the variant has a dominant negative effect on enzymatic activity, substrate affinity, cooperativity and thermal stability. Moreover, it also affects the non-canonical functions of muscle fructose 1,6-bisphosphatase involved in mitochondrial protection and regulation of several nuclear processes. In patients' fibroblasts, muscle fructose 1,6-bisphosphatase shows no colocalization with mitochondria and nuclei leading to increased reactive oxygen species production and a disturbed mitochondrial network. In conclusion, the results of this study indicate that the variant in FBP2 disturbs cerebral energy metabolism and is associated with a novel remitting leukodystrophy

    Biotin-Responsive Basal Ganglia Disease: A Treatable Differential Diagnosis of Leigh Syndrome.

    No full text
    Biotin-responsive basal ganglia disease (BBGD) is an autosomal recessive disorder, which is caused by mutations in the SLC19A3 gene. BBGD typically causes (sub)acute episodes with encephalopathy and subsequent neurological deterioration. If untreated, the clinical course may be fatal. Our report on a 6-year-old child with BBGD highlights that the disease is a crucial differential diagnosis of Leigh syndrome. Therefore, biotin and thiamine treatment is recommended for any patient with symmetrical basal ganglia lesions and neurological symptoms until BBGD is excluded. In addition, we exemplify that deformation-field-based morphometry of brain magnetic resonance images constitutes a novel quantitative tool, which might be very useful to monitor disease course and therapeutic effects in neurometabolic disorders
    corecore