264 research outputs found

    Amplifying the Security of One-Way Functions — A Proof of Yao's XOR-Lemma

    Get PDF
    In this paper we give a consistent and simple proof for the XOR-Lemma which was hinted at by Yao and subsequently presented by him in lectures. It can be found in print in "E. Kranakis, Primality and Cryptography, Wiley-Teubner Series in Computer Science, 1986". By the lemma we know that the security of any one-way function f:Xlongrightarrow { 0,1} can be substantially amplified if the function is replaced by the XOR with itself, namely by foplus f:X imes Xlongrightarrow { 0,1}, (x,y)longrightarrow f(x)oplus f(y). Applications are in cryptography and complexity theory. However, the existence of one-way functions still remains an open problem

    Factoring Integers above 100 Digits using Hypercube MPQS

    Get PDF
    In this paper we report on further progress with the factorisation of integers using the MPQS algorithm on hypercubes and a MIMD parallel computer with 1024 T-805 processors. We were able to factorise a 101 digit number from the Cunningham list using only about 65 hours computing time. We give new details about the hypercube sieve initialisation procedure and describe the structure of the factor graph that saves a significant amount of computing time. At March 3rd, we finished the factorisation of a 104 digit composite

    Process Stabilization at welding Copper by Laser Power Modulation

    Get PDF
    AbstractDue to their material properties such as high electrical and thermal conductivity, copper materials are more and more demanded for industrial applications. The same material properties make laser welding of copper a challenging task. Laser welds often suffer from defective weld seams with ejections, pores and a large fluctuation in the penetration depth. In this paper the influence of laser power modulation during copper welding on weld imperfections is discussed. It is shown that a sinusoidal power modulation leads to a strong reduction of melt ejections and also to an increase in penetration depth

    Radiotherapy in Medulloblastoma—Evolution of Treatment, Current Concepts and Future Perspectives

    Get PDF
    Medulloblastoma is the most frequent malignant brain tumor in children. During the last decades, the therapeutic landscape has changed significantly with craniospinal irradiation as the backbone of treatment. Survival times have increased and treatments were stratified according to clinical and later molecular risk factors. In this review, current evidence regarding the efficacy and toxicity of radiotherapy in medulloblastoma is summarized and discussed mainly based on data of controlled trials. Current concepts and future perspectives based on current risk classification are outlined. With the introduction of CSI, medulloblastoma has become a curable disease. Due to combination with chemotherapy, survival rates have increased significantly, allowing for a reduction in radiation dose and a decrease of toxicity in low- and standard-risk patients. Furthermore, modern radiotherapy techniques are able to avoid side effects in a fragile patient population. However, high-risk patients remain with relevant mortality and many patients still suffer from treatment related toxicity. Treatment needs to be continually refined with regard to more efficacious combinatorial treatment in the future

    Electrical resistance of individual defects at a topological insulator surface

    Full text link
    Three-dimensional topological insulators host surface states with linear dispersion, which manifest as a Dirac cone. Nanoscale transport measurements provide direct access to the transport properties of the Dirac cone in real space and allow the detailed investigation of charge carrier scattering. Here, we use scanning tunnelling potentiometry to analyse the resistance of different kinds of defects at the surface of a (Bi0.53Sb0.47)2Te3 topological insulator thin film. The largest localized voltage drop we find to be located at domain boundaries in the topological insulator film, with a resistivity about four times higher than that of a step edge. Furthermore, we resolve resistivity dipoles located around nanoscale voids in the sample surface. The influence of such defects on the resistance of the topological surface state is analysed by means of a resistor network model. The effect resulting from the voids is found to be small compared to the other defects

    Single-Domain Parvulins Constitute a Specific Marker for Recently Proposed Deep-Branching Archaeal Subgroups

    Get PDF
    Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes assisting protein folding and protein quality control in organisms of all kingdoms of life. In contrast to the other sub-classes of PPIases, the cyclophilins and the FK-506 binding proteins, little was formerly known about the parvulin type of PPIase in Archaea. Recently, the first solution structure of an archaeal parvulin, the PinA protein from Cenarchaeum symbiosum, was reported. Investigation of occurrence and frequency of PPIase sequences in numerous archaeal genomes now revealed a strong tendency for thermophilic microorganisms to reduce the number of PPIases. Single-domain parvulins were mostly found in the genomes of recently proposed deep-branching archaeal subgroups, the Thaumarchaeota and the ARMANs (archaeal Richmond Mine acidophilic nanoorganisms). Hence, we used the parvulin sequence to reclassify available archaeal metagenomic contigs, thereby, adding new members to these subgroups. A combination of genomic background analysis and phylogenetic approaches of parvulin sequences suggested that the assigned sequences belong to at least two distinct groups of Thaumarchaeota. Finally, machine learning approaches were applied to identify amino acid residues that separate archaeal and bacterial parvulin proteins from each other. When mapped onto the recent PinA solution structure, most of these positions form a cluster at one site of the protein possibly indicating a different functionality of the two groups of parvulin proteins

    Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study

    Get PDF
    Introduction The gene MICA encodes the protein major histocompatibility complex class I polypeptide-related sequence A. It is expressed in synovium of patients with rheumatoid arthritis (RA) and its implication in autoimmunity is discussed. We analyzed the association of genetic variants of MICA with susceptibility to RA. Methods Initially, 300 French Caucasian individuals belonging to 100 RA trio families were studied. An additional 100 independent RA trio families and a German Caucasian case-control cohort (90/182 individuals) were available for replication. As MICA is situated in proximity to known risk alleles of the HLA-DRB1 locus, our analysis accounted for linkage disequilibrium either by analyzing the subgroup consisting of parents not carrying HLA-DRB1 risk alleles with transmission disequilibrium test (TDT) or by implementing a regression model including all available data. Analysis included a microsatellite polymorphism (GCT)n and single-nucleotide polymorphisms (SNPs) rs3763288 and rs1051794. Results In contrast to the other investigated polymorphisms, the non-synonymously coding SNP MICA-250 (rs1051794, Lys196Glu) was strongly associated in the first family cohort (TDT: P = 0.014; regression model: odds ratio [OR] 0.46, 95% confidence interval [CI] 0.25 to 0.82, P = 0.007). Although the replication family sample showed only a trend, combined family data remained consistent with the hypothesis of MICA-250 association independent from shared epitope (SE) alleles (TDT: P = 0.027; regression model: OR 0.56, 95% CI 0.38 to 0.83, P = 0.003). We also replicated the protective association of MICA-250A within a German Caucasian cohort (OR 0.31, 95% CI 0.1 to 0.7, P = 0.005; regression model: OR 0.6, 95% CI 0.37 to 0.96, P = 0.032). We showed complete linkage disequilibrium of MICA-250 (D' = 1, r2= 1) with the functional MICA variant rs1051792 (D' = 1, r2= 1). As rs1051792 confers differential allelic affinity of MICA to the receptor NKG2D, this provides a possible functional explanation for the observed association. Conclusions We present evidence for linkage and association of MICA-250 (rs1051794) with RA independent of known HLA-DRB1 risk alleles, suggesting MICA as an RA susceptibility gene. However, more studies within other populations are necessary to prove the general relevance of this polymorphism for RA
    corecore