Factoring Integers Above 100 Digits
Using Hypercube MPQS

F. Damm, F.-P. Heider, G. Wambach
University of Cologne

March 3, 1994

Abstract

In this paper we report on further progress with the factorisation of integers using
the MPQS algorithm on hypercubes and a MIMD parallel computer with 1024 T805
processors. We were able to factorise a 101 digit number from the Cunningham list
using only about 65 hours computing time. We give new details about the hypercube
sieve initialisation procedure and describe the structure of the factor graph that saves
a significant amount of computing time. At March 3rd, we finished the factorisation

of a 104 digit composite.

1 Scope and Achievements

The integer factoring problem carries a long mathematical tradition. It is of cryptographic
significance since about 16 years, when the first public-key cryptosystem algorithms ap-
peared. Several of these rely on the difficulty of factoring and thus we need to have reliable
data about factoring time when chosing parameter sizes for asymmetric cryptosystems and
the many protocols using them.

One year ago, a Parsytec MIMD parallel computer with 1024 T805 microprocessors
was installed at our university. At the same time, the second author gave a course on
parallelisation of number theoretic algorithms which led us to our factorisation project. We
chose the MPQ)S general purpose factoring algorithm and implemented a sieve initialisation
procedure using hypercubes that had been suggested before but was not yet implemented.
By the end of the last year, our work yielded the factorisation of a 97 digit cofactor of
12327 + 1 from the Cunningham list [BLSTW83] (C'97 for short), the experiences of which
we described before.

In the meantime we continued with the project and obtained the factorisation of the

101 digit cofactor of 527 — 1 (C'101), namely

5 56028 11293 76381 05007 45276 70973 97005 19820 97448 09147
14501 62657 88991 51675 71596 62654 25103 75972 77807 81281

Y

into the factors
376909 36915 50663 79919 58222 42521 83771
and
1 47523 02766 68658 47120 04868 63136
40646 58947 74138 14689 11613 43843 33811

of 36 and 66 digits. We could do this with about 65 hours processing time and won further
insight into the parameter selection for MPQ)S. Just in time, we completed the factorisation
of a composite cofactor of 104 digits (C'104) of the Cunningham number 122?* +1 into prime
factors of 40 and 65 digits.

The size of the composite number to be factored determines an upper bound for the di-
mension of the hypercubes used. Moving from a 97 digit composite to a 104 digit composite
enables us to increment the dimension by one which results in the expected reduction of
the time needed for the preparation stage. For example, only 3 out of 128 processors were
needed for the initialisation and the traversal of the hypercubes while the other processors
did the sieve. Thus the initialization time took less than 2.5 % of the whole computing
time, compared with 20-30 % in the classical MPQS.

Much of the computation time otherwise needed was saved by looking for cycles in
the “factor graph”, following suggestions in [LeMa90]. Since the paper of Lenstra and
Manasse is very brief and no other work has been published, we describe the construction
and structure of this graph in greater detail here.

The main findings are that all our cycles lie in 1 connected component of the graph
and that most of the cyles are shorter than 10 edges. Furthermore, we found graphs
containing a large star at the node corresponding to 1, followed by a second star at the
node corresponding to the multiplier (if different from 1) and the rest of the edges scattered
around very sparsely. An algorithm that repeatedly cuts off the leaves of the graph takes
moderate computing time and produces a much smaller subgraph which is equivalent to

the original one when searching and exploiting cycles.

2 Details and Results

2.1 The Hypercube Variation

We assume familiarity with the ‘Multiple Polynomial Quadratic Sieve’ (MPQS) algorithm
([Pome84],[Silv87]) and will sketch only the improved hypercube variation used by us.

Let N be the composite integer to be factored. After choosing a factorbase F of R
primes p;, 1 < ¢ < R, and a sieve length M, a lot of quadratic polynomials Q.(X) =
a*X? + 2bX + ¢ are generated, b* — N = a*c and |b] < % It follows that Quu(X) =
(a*X + b)*a? mod N. The requirement |Q.,(—M)| =~ |Qu(0)] & |Qu(M)]| leads to the
condition a? ~ V2N /M. For every such polynomial the roots modulo p;, 1 <7 < R, must
be computed (the preparation stage), the interval [—M, M[NZ is sieved (the sieve stage),
and the candidates are collected.

Now for every prime p in the factorbase let ¢, be a square root of N mod p: t; =

N mod p. If p does not divide a, then
Qup(z) =0mod p & = = (—b£t,)a"* mod p.

The t,’s are independent of the @,, and will be computed only once, but ¢=* mod p for
every a and for every p € F has to be computed.

In [Silv87] the a’s are (pseudo-)primes not divisible by any p € F. Montgomery (quoted
in [PoST88]) and Peralta ([Pera92]) independently observed that if a = 7y - ... - 7, is the
product of / primes 7; (such that N is a quadratic residue modulo 7;), there are 2! different
values b mod a? with b = N mod a?. Since Quy(z) = Qupy(—x), we get 27! different
polynomials with each a.

Given «;, 3; with

oz? = N mod 71']2

1 mod 7
0mod 77 ,1+#)

every b can be written uniquely as b = Zé‘:l §;a;3; mod a* where 6; € {+1,—1}. We fix

and

N SN

Bi

-

(12
7-
R. Peralta further noticed that the solution set of 8 = N mod a? is structured like

v; = a;3; mod a* such that v; is less than

an [-dimensional hypercube C; = ., vertices corresponding to solutions b. Two vertices

are adjacent if the corresponding solutions b, 0" differ at exactly one sign 6;. He suggested
to follow a certain hamiltonian cycle of C; = (F5™ x {0}) U (IF5™" x {1}) resulting in a
sequence k;, 1 <1 <2 — 1, with k; = j if step ¢ changes coordinate j, such that the tour

biy1 = b; + 2p;7yk, mod a?

with p4; = +1 or —1 depending on whether step ¢ changes coordinate k; from — to 4 or
from + to — visits all vertices of the hypercube.

Whereas Peralta devised an algorithm requiring three additions and one multiplication
modulo every prime p in the factorbase to step from b; to b;11, we use precomputed tables
of 2v;a™? mod p and (a*? — 2v;)a™? mod p for 1 < j < [and every p in the factorbase to
obtain from the modular root z; = (—ba™? £ ¢,a?) mod p of Q,(X) the root

Tip1 = (2 — 2py,a77) mod p

of Qap,,,(X) in only one addition mod p. The cost for doing this results in the additional
space consumption of 2[R integers. As a second improvement we sieve many hypercubes
at a time.

Nearly factored candidates out of the sieve stage are relations of the form

R
41G2 H pd =22 mod N

i=0
with ¢; = 1 or ¢; > pgr prime. If both ¢; = ¢ = 1 this is called a full relation, otherwise a
partial relation. Exploiting the idea of using ‘partial partial relations’ [LeMa90] more than
compensates for the negative effect that a-values from the polynomials used are divided
by several primes in the factorbase. We will describe this part in more detail in the next

but one section.

2.2 Sketch of the Parallelisation

The Parsytec GCel installed at our university’s “Zentrum fir Paralleles Rechnen” is a
MIMD parallel computer and consists of 1024 Inmos T805 transputers. Fvery processor
has only 4 MByte RAM, 350 kByte of which are occupied by the operating system. There-
fore both parallel MPQS-implementations described in [CaSi88] and [Lens92] were not

applicable on our machine.

We just mention the development of two parallel approaches particularly suited for
MIMD parallel computers (a full description of both implementations including the com-
munication aspects will be given in [Wamb94]). While the first one is presently used, the
second one still is in an experimental phase. Both methods use a dedicated node (the ‘root’)
whose only tasks consist in the collection of candidates and the input/output-operations.

In the first implementation we have two additional types of processors which we will
call ‘masters” and ‘slaves’. Fach master creates its own set of hypercubes. After initializing
its first hypercube, the first master travels along the hamiltonian cycle described above. At
every vertex it computes the new set of modular roots of (),;. These 2R integers and the
coefficients of the polynomial are sent to a consecutive set of slaves which will sieve with
the same polynomial. After making busy all slaves, the first master leaves its hypercube
and initializes the second one. In the meantime the slaves that have finished are at the
disposal of the second master, and so on. Each slave sieves its part of the sieve array with
the received roots. Any candidates found after the sieving process will be stored in a local
buffer. When the buffer overflows its content is sent to the root. Critical parameters here
are the number of masters and the number of slaves in a consecutive set. These values
obviously depend on the number to be factored (determining R and M), the dimension of
the hypercubes and on the number of processors the program will run on. They are chosen
carefully to avoid any idle times.

The second parallelisation groups all processors but the root together into rings of
r processors each. Every group works on its own hypercubes. The factorbase is split
into r parts of size R/r. Moving from one vertex to another, each processor in a group
first computes its part of the modular roots of the new polynomial Q. After 2(r — 1)
communications with its two neighbours involving 2R/r integers every processor knows
the modular roots of (), for the whole factorbase. The sieve array is split into r parts,
too. Every processor sieves its part using blocks of predefined length. Any candidates
found after the sieving process will be stored in a local buffer as in the first approach.
While the amount of data sent among the processors is roughly the same, communicating
processors are not as far apart as in the first approach, if the rings are mapped carefully
on the processors obeying the underlying physical topology. Therefore it seems worthwile
to let the root process runnning on the front-end computer and communicate to the root

via sockets.

2.3 Structure in the Factor Graph of Composite Numbers

Let F = {po,...,pr} be the factorbase with py = —1 and R primes used to factor a number
N, let ¢, z, ¢; be integers (¢; non-negative, : = 0,..., R). We assume that no multiplier m

is used and treat m # 1 separately in the next section.

number factorised C97 C'101 C'104
sieve 9.437.184 | 12.582.912 | 15.728.640
factorbase 40.000 40.000 42.000
cubes 11.789 15.946 17.021
polynomials 671.913 712.524 | 2.110.604
computing time 39 h 65 h 177 h
full relations, initially 6.124 9.838 5.805
partial relations 1.207.688 | 1.328.204 | 3.337.419
pairs 7.055 11.155 5.780
full relations, including pairs 13.179 20.993 11.585

Table 1: Full Relations Found without Factor Graph

From the sieving stage we obtain a large number of partially factorised quadratic

residues modulo N (we call them “partial relations”, like [LeMa90])
R
q[[pi¥ = 2* mod N (1)
i=0
We know that all divisors of ¢ are larger than pr and we further have (assuming pr > 2'°)
¢ < DR (2)
(ph < ¢ < b* and ¢ is composite) or ¢ < 2% < ph (3)

7, 2°2 and the bound b are parameters of the algorithm. We used b = 10® with C97,
b=2-10% with C101, b = 3-10® with C'104 and 7 < 3. The compositeness in (3) is tested
with the Miller-Rabin algorithm.

If ¢ < p%, we immediately know that ¢ must be a prime. We store the relation, if
moreover ¢ < 232, This is because we do not want to exceed one machine word. In a

previous approach, we only stored partial relations with ¢ < p%, if ¢ < b held. The move

6

to ¢ < 2°% caused no significant extra cost and the number of cycles in the factor graph
increased by about 10% (with b= 10%, C'97).
The second interesting case in (3) is p3 < ¢ < b* and ¢ is not prime. Then it must
consist of exactly two factors, say r and s:
b2

q=7-35, pPr<T1,8 < — (4)
PR

In a first step we store all the ¢-values of partial relations (1) in an array, sort it and

look for double entries. Whenever a pair

R

q pr“' = zimod N
=0
R

q Hpiczm‘ = zmod N
=0

appears, we can easily obtain a full relation (to store) for the final MPQS step:

L 2\’
e 122
| | pic1,1+c2,z = (—) mod N

=0 q

With C'97, we obtained 7.055 pairs of this kind from 1.207.688 partial relations, while
1.328.204 partial relations produced 11.155 pairs with C'101 and 3.337.419 partial relations
made 5.780 pairs with C'104. The computing time is additionally shown in table 1. The
sizes of the factorbases were restricted by the program used for the last step of the MPQS
algorithm and hence not optimal.

In the next step, we run a factorisation procedure on the ¢’s in (4) to find r and s.
We use the Pollard p-algorithm with at most [v/b] iteration steps using one polynomial.
Whenever the algorithm finds a factor r, we calculate s = ¢/r and check whether r < 232
and s < 2%2, If so, we store the relation for later use. Otherwise, we discard it.

With C'101, we factored 886.334 g-values. 835.137 were found to factorise in two 32 bit
parts, 49.442 contained a factor > 2%? and 3.582 could not be factored in 14.142 steps.

Now we are prepared to introduce and build the factor graph G = (V, E). The first
node in V is identified with 1. All the primes ¢ appearing in (1) and r, s appearing in (4,
1) make up the rest of the nodes. We put an edge e = (v, w) into the graph, iff v =1 and
w =¢q,qaprimein (1) or v =r and w = s in (4). The graph of C'101 contained 1.470.729
nodes and 1.264.025 edges.

number factorised C'101

nodes edges leaves isolated nodes
full graph 1.470.729 1.264.025 | 1.197.630 —
1st optimisation 273.099 237.361 109.335 48.305
2nd 115.459 28.938 3.375
3rd 83.146 9.994 429
4th 72.723 3.842 61
5th 68.820 1.575 12
6th 67.233 617 4
7th 66.612 246 —
8th 66.366 100 —
9th 66.266 42 —
10th 66.224 23 —
11th 66.201 12 —
12th 66.189 6 —
13th 66.183 2 —
14th 66.181 1 —
15th 66.180 94.645 — —

Table 2: Deletion of Superfluous Nodes from the Factor Graph

We basically use two graph algorithms to investigate and exploit the factor graph. The
first one is a breadth-first search algorithm and the second one cuts off leaves and isolated
nodes repeatedly. By breadth-first search we look for cycles in (&, whenever a cycle is
found, it is stored, the last edge traversed is deleted from &, and the search is continued.

We found that G(C'101) contained 235.170 connected components. The graph contains
a large star at node 1 (about 431.000 edges) and a rest of about 832.000 edges distributed
between 1.470.728 nodes. We found 28.466 cycles in the component that contains node 1.
The deletion of all nodes that can not be part of cycles with repeated leaf-cutting is shown
in table 2. (Components containing one edge only are counted as two leaves here.)

We can deduce that G(C'101) contained the reduced graph of 66.180 nodes and 94.645
edges in one single component, plus 1 tree of depth 14, 1 tree of depth 13, 4 trees of depth

12

components of G with even diameter, i.e. G contained 48.305 tree components with two

, eee 5 63.937 trees of depth 2 and 1.197.630 leaves. Isolated nodes are left from tree
edges diameter, 3.375 trees with 4 edges diameter, and so forth.

Using breadth-first search after fewer cutoff steps we found, that indeed most of the
components only contain 1 edge. 25 cutoff steps are not prohibitive in computer time
(about 15 minutes at an IBM RS 6000 / 53H) such that cycle search in even larger factor
graphs should be feasible with moderate memory sizes.

By the above procedure we get a collection of cycles that are a basis of the cycle space
of G. We do not find a basis of cycles whose lengths are shortest, which might be desirable
because of the cycle use (see below). However, our cycle lengths do not seem to make that
necessary: 9.868 were 3 edges long, 18.328 were between 4 and 9 edges and only 270 of
them were from 10 to 20 edges long.

full relations

0000 e 2
progressin the factorisation of C.101:
upper curve: asolutions, bpairs, cycles
30.000 — middle curve: asolutions, bpairs

lower curve: asolutions

20.000 —

10.000 —

500.000 1.000.000 1.500.000 bsolutions

Figure 1: Development of the Overall Number of Full Relations with C'101

Next, we can make a full relation out of each of the cycles found. Let us e.g. use a

full relations
40.000 —
progress in the factorisation of C.104:
upper curve: asolutions, bpairs, cycles
30.000 — middle curve: asolutions, bpairs
lower curve: asolutions
20.000 —|
10.000 —

1.000.000 2.000.000 3.000.000 bsolutions

Figure 2: Development of the Overall Number of Full Relations with C'104

cycle of length 4 passing node 1, that is a situation like

L-r-TIE p = 22mod N | r-s-T[E,p = 22modN,

S-t-Hﬁ:OpiCSv" = ngodN , 1-t-Hﬁ:0pic4v" = ZZmodN

which gives us

R
2 2 2 2 c1iteaitesitea
22y czsez = lereresesot-t-1-[] p mod N
=0
R
— (T .5 - t)Q . Hpic1,i+c2,i+c3,i+c4,i mod N
=0

and thus

2 R

(271222324) = [picri+eteitesi mod N

— = 3
rst =0

This way we obtained 28.466 (33.004) more full relations for C'101 (C'104), which was suf-
ficient with 9.838 (5.805) and 11.155 (5.780) already available (table 3). The development
of the overall number of full relations as partial relations were found is sketched in figures

1, 2.

10

number factorised C'101 C'104
full relations, initially 9.838 5.805
partial relations 1.328.204 | 3.337.419
full relations, from pairs 11.155 5.780
factorised ¢’s 1.318.525 | 3.333.786
prime 432.191 299.357
composite 835.137 | 2.453.363
factor too large 49.442 558.304
no factorisation 3.582 22.762
full graph:

nodes 1.470.729 | 3.441.027
edges 1.264.025 | 2.750.587
components 235.170 723.444
reduced graph:

nodes 66.180 100.130
edges 94.645 133.133
components 1 1
cycles (further full relations) 28.466 33.004
cycle length:

3 9.868 5.769
4...9 18.328 24.361
10...19 270 2.865
20...49 8
overall nr. of full relations 49.459 44.589

11

Table 3: Factor Graph and Full Relations of C'101 and C'104

2.4 Using a Multiplier m # 1

It is common to use a multiplier to speed up MPQS. To obtain more small primes in the
factorbase, IV is substituted by m - N for the construction of F and the sieve (with m a
small integer). We (e.g.) used m = 5 to factorise C'97 and report on our findings in this
section.

Given that the size of the factorbase F is chosen first and the cycles in the factor graph
are used, we did not experience the savings in computing time estimated by Pomerance
et. al. [PoST88|.

However, the factor graph gets an entirely different shape with m # 1. We found it
containing two large stars at node 1 and node m now which are connected by a (1, m)-edge.
Hence, short cycles like (1,m)(m, ¢)(¢,1), with ¢ a prime, are possible for many different
g-values.

At first sight it seems to be a drawback that we have to treat 4 types of edges now

instead of two: From partial relations like (1) we might obtain edges

Y

(1,q) with ¢ a prime, ¢ < 232,

(m,q) with ¢ a prime, ¢ < 232,

(r,s) with ¢ = r - 5, 7, s primes, both < 232,
(ry$)m with ¢ = m -r - s, r,s primes, both < 232,

We introduced an m flag for every edge in (G to recognize edges of the second and fourth
type “containing” m. When factoring ¢ from (1), we have to be careful whether possibly
m? divides ¢. However, with (97 this did not occur.

The graph is exploited similar to the case m = 1. With every cycle we distinguish two

cases. In the first case the cycle contains an even number of m-edges, e.g.

m-r-[[Eyp® = 2Z2Zmod N |, r-s-[[E,p® = 22mod N,

m-s-t-[[Eyp® = 22mod N |, 1-t-[[Eyp* = z2mod N

Hence we get the full relation

2 R

Z1%2273%4))))

<7 = | | picl,z+c2,z+03,z+c4,z mod N
mrst =0

The other case is a cycle containing an odd number of m-edges. We can not directly

use the above method now, however we are allowed to combine two cycles with an odd

12

number of m-edges. More precisely, we store the “first odd m-cycle”, say

meor-[[Eop = 22mod N | r-s-[[E,p? = 22modN,

s-1-TMEyp = z22mod N
and combine it to a full relation with every other odd m-cycle, say e.g.

m-t-u-[[Hep = 22mod N |, m-u-v-[[E,p®™ = 22 modN,

m-v-[[E,p = 22mod N

yielding the full relation

z zg \ 2 R
(1---~6) — | | p,Cl,i+C2,i+03,i+C4,i mod N
— 1

m2rstuv -
1=0

With C'97, we found 36.489 full relations by this prodecure, which was far more than

would have been needed.

2.5 Outlook

Due to space and time limitiations, this paper shows only the most interesting and import-
ant parts of our results. We continue our work on the second parallelisation [Wamb94] and
the investigation of the structure of the factor graph [Damm94]. Of course, we are going

to factor bigger numbers in the near future too. We would be very grateful for comments.

2.6 Acknowledgement

We are very grateful to R. Schrader for generous support. We owe further thanks to
M. Behland for his help with the assembler programming, and to the “Zentrum fiir Paral-

leles Rechnen” for offering computing time.

References

[BLSTWS83] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstalff,
Jr., Factorizations of 0" 1 forb =2, 3, 5, 6, 7, 10, 12, up to High Powers. American
Mathematical Society, Providence, Rhode Island, 1983.

[CaSi88] T. S. Caron, R. D. Silverman, “Parallel Implementation of the Quadratic Sieve”,
Journal of Supercomputing, 1 (1988), pp. 273-290.

13

[Damm94] F. Damm, “Cycle Structures in the Factor Graph of a Composite Number”, in

preparation.

[LeMa90] A. K. Lenstra, M. S. Manasse, “Factoring with two large primes” (Extended Ab-
stract), Advances in Cryptology, Eurocrypt "90, Lecture Notes in Computer Science
473 (1991), pp.72-82.

[Lens92] A. K. Lenstra, “Massively Parallel Computing and Factoring”, Proceeding Latin
92, Lecture Notes in Computer Science 583 (1992), pp.344 - 355.

[Pera92] R. Peralta, “A quadratic sieve on the n-dimensional cube”, Advances in Crypto-

logy, Crypto '92, Lecture Notes in Computer Science 740 (1993), pp.324-332.

[Pome84] C. Pomerance, “The Quadratic Sieve Factoring Algorithm”, Advances in Crypto-
logy, Furocrypt ‘84, Lecture Notes in Computer Science 209 (1985), pp.169-182.

[PoST88] C. Pomerance, J. W. Smith, R. Tuler, “A pipeline architecture for factoring large
integers with the quadratic sieve algorithm”, STAM Journal of Computation, Vol.17,
No.2, pp.387-403, Apr. 1988.

[Silv87] R. D. Silverman, “The Multiple Polynomial Quadratic Sieve”, Mathematics of
Computation, Vol.48, No.177, pp.329-339, Jan. 1987.

[Wamb94] G. Wambach, “A Comparison of Two Parallelisations of the MPQS Algorithm
on the Parsytec GCel”, in preparation.

14

