414 research outputs found

    Testing of an automatic earthquake detection method on data from Station Nord, Greenland

    Get PDF
    Earthquakes are continuously monitored by a global network of several thousand seismic stations equipped with highly sensitive digital seismometers. The Geological Survey of Denmark and Greenland (GEUS) takes part in it by operating five seismic stations in Denmark and 18 in Greenland, some of the latter in collaboration with international partners. There are two main ways of detecting earthquakes from digital recordings of seismometers: (1) by a manual review of the data by an expert in processing seismic earthquake signals and (2) by an automatic method that uses a computerised algorithm to analyse the recordings

    Comprehensive Nuclear-Test-Ban Treaty – a peace-keeping initiative with scientific impact

    Get PDF
    Any major shaking of the Earth can be recorded on a seismograph regardless of the nature of the source. Earthquakes and large explosions generate waves with similar frequency content. This fact has been used for decades to construct systems to monitor detonations of underground nuclear explosions. The quality of the monitoring system has increased significantly in recent years, and we demonstrate here that the data are useful in Danish earthquake research

    Nordic EPOS - A FAIR Nordic EPOS Data Hub

    Get PDF
    Non peer reviewe

    Citizen Seismology in the Arctic

    Get PDF
    Landslides, earthquakes and other natural disasters are expected to increase in the Arctic, yet our ability to make informed decisions about safety is tightly limited by lack of data. As part of the Integrated Arctic Observation System (INTAROS) project, geophones were installed by residents in Greenland and by University of Bergen in Svalbard in 2018. The purpose of the installations was to explore challenges and benefits of community-based data collection for seismological monitoring in the Arctic region. Raspberry Shake units with one/three-component velocity sensors were selected for the deployment, due to their user-friendly configuration, easy installation, and well established digital platform and web services. The purpose of engaging community members in the use of geophone sensors was to monitor earthquakes, cryoseisms (events generated by ice mass), and landslides. We report our findings with respect to challenges regarding the installation and operation of the Raspberry Shake sensors at both locations. Connecting community-based recordings with permanent seismological networks improved both the detection capability and the data support for understanding seismic events in Greenland. In contrast, finding suitable locations for deployments in Longyearbyen turned out to be challenging, because most buildings are constructed on poles due to the permafrost and indoor space is expensive. Promoting citizen seismology in the Arctic could improve monitoring of seismic events in the Arctic while simultaneously raising community awareness of natural hazards.publishedVersio

    A multidisciplinary approach to landslide monitoring in the Arctic: Case study of the March 2018 ML 1.9 seismic event near the Karrat 2017 landslide

    Get PDF
    The landslide of 17 June 2017 at Karrat Fjord, central West Greenland, triggered a tsunami that caused four fatalities. The catastrophe highlighted the need for a better understanding of landslides in Greenland and initiated a recent nation-wide landslide screening project led by the Geological Survey of Denmark and Greenland (GEUS; see also Svennevig (2019) this volume). This paper describes an approach for compiling freely available data to improve GEUS’ capability to monitor active landslides in remote areas of the Arctic in near real time. Data include seismological records, space borne Synthetic Aperture Radar (SAR) data and multispectral optical satellite imagery. The workflow was developed in 2018 as part of a collaboration between GEUS and scientists from the Technical University of Denmark (DTU). This methodology provides a model through which GEUS will be able to monitor active landslides and provide relevant knowledge to the public and authorities in the event of future landslides that pose a risk to human life and infrastructure in Greenland. We use a minor event on 26 March 2018, near the site of the Karrat 2017 landslide, as a case study to demonstrate 1) the value of multidisciplinary approaches and 2) that the area around the landslide has continued to be periodically active since the main landslide in 2017

    Development of outdoor luminescence imaging for drone-based PV array inspection

    Get PDF
    This work has the goal to perform outdoor defect detection imaging that will be used in a fast, accurate and automatic drone-based survey system for PV power plants. The imaging development focuses on techniques that do not require electrical contact, permitting automatic drone inspections to be perform quicker and with less manpower. The final inspection method will combine several techniques such as, infrared (IR), electroluminescence (EL), photoluminescence (PL), and visual imaging. Solar plant inspection in the future can be restricted only by imaging speed requirements, allowing an entire new perspective in large-scale PV inspection

    The Nature of Working Memory for Braille

    Get PDF
    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents

    Outdoor Electroluminescence Acquisition Using a Movable Testbed

    Get PDF
    The experimentation with a movable outdoor electroluminescence (EL) testbed is performed in this work. For EL inspections of PV power plants, the fastest scenario will include the use of unmanned aerial vehicle (UAV) performing image acquisition in continuous motion. With this motivation, we investigate the EL image quality of an acquisition in motion and the extent of image processing required to correct scene displacement. The results show processed EL images with a high level of information even when acquired at 1 m/s camera speed and at frame rate of 120 fps.</p
    • …
    corecore